CS269: Seminar: Machine Learning in Natural Language Processing Fall 2017

$$
\text { Problem Set } 0
$$

Handed Out: September $28^{s t}, 2017$ Due: NONE

1. [Probability] Assume that the probability of obtaining heads when tossing a coin is λ.
a. What is the probability of obtaining the first head at the $(k+1)$-th toss?
b. What is the expected number of tosses needed to get the first head?
2. [Probability] Assume X is a random variable.
a. We define the variance of X as: $\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]$. Prove that $\operatorname{Var}(X)=$ $E\left[X^{2}\right]-E[X]^{2}$.
b. If $E[X]=0$ and $E\left[X^{2}\right]=1$, what is the variance of X ? If $Y=a+b X$, what is the variance of Y ?
3. [Calculus] Let $f(x, y)=3 x^{2}+y^{2}-x y-11 x$
a. Find $\frac{\partial f}{\partial x}$, the partial derivative of f with respect to x. Find $\frac{\partial f}{\partial y}$.
b. Find $(x, y) \in \mathbb{R}^{2}$ that minimizes f.
4. [Linear Algebra] Assume that $w \in \mathbb{R}^{n}$ and b is a scalar. A hyper-plane in \mathbb{R}^{n} is the set, $\left\{x: x \in \mathbb{R}^{n}, w^{T} x+b=0\right\}$.
a. For $n=2$ and 3, find two example hyper-planes (say, for $n=2, w^{T}=\left[\begin{array}{ll}1 & 1\end{array}\right]$ and $b=2$ and for $n=3, w^{T}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ and $\left.b=3\right)$ and draw them on a paper.
b. The distance between a point $x_{0} \in \mathbb{R}^{n}$ and the hyperplane $w^{T} x+b=0$ can be described as the solution of the following optimization problem:

$$
\begin{aligned}
& \min _{x}\left\|x_{0}-x\right\|^{2} \\
& \text { s.t. } w^{T} x+b=0
\end{aligned}
$$

However, it turns out that the distance between x_{0} and $w^{T} x+b=0$ has an analytic solution. Derive the solution. (Hint: you may be familiar with another way of deriving this distance; try your way too)
c. Assume that we have two hyper-planes, $w^{T} x+b_{1}=0$ and $w^{T} x+b_{2}=0$. What is the distance between these two hyperplanes?

