CS269: Seminar: Machine Learning in Natural Language Processing Fall 2017 Problem Set 0

Handed Out: September 28st, 2017

- 1. [Probability] Assume that the probability of obtaining heads when tossing a coin is λ .
 - a. What is the probability of obtaining the first head at the (k + 1)-th toss?
 - b. What is the expected number of tosses needed to get the first head?
- 2. [Probability] Assume X is a random variable.
 - a. We define the variance of X as: $Var(X) = E[(X E[X])^2]$. Prove that $Var(X) = E[X^2] E[X]^2$.
 - b. If E[X] = 0 and $E[X^2] = 1$, what is the variance of X? If Y = a + bX, what is the variance of Y?
- 3. [Calculus] Let $f(x, y) = 3x^2 + y^2 xy 11x$
 - a. Find $\frac{\partial f}{\partial x}$, the partial derivative of f with respect to x. Find $\frac{\partial f}{\partial y}$.
 - b. Find $(x, y) \in \mathbb{R}^2$ that minimizes f.
- 4. [Linear Algebra] Assume that $w \in \mathbb{R}^n$ and b is a scalar. A hyper-plane in \mathbb{R}^n is the set, $\{x : x \in \mathbb{R}^n, w^T x + b = 0\}$.
 - a. For n = 2 and 3, find two example hyper-planes (say, for n = 2, $w^T = \begin{bmatrix} 1 & 1 \end{bmatrix}$ and b = 2 and for n = 3, $w^T = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ and b = 3) and draw them on a paper.
 - b. The distance between a point $x_0 \in \mathbb{R}^n$ and the hyperplane $w^T x + b = 0$ can be described as the solution of the following optimization problem:

$$\min_{x} ||x_0 - x||^2$$

s.t. $w^T x + b = 0$

However, it turns out that the distance between x_0 and $w^T x + b = 0$ has an analytic solution. Derive the solution. (*Hint: you may be familiar with another way of deriving this distance; try your way too*)

c. Assume that we have two hyper-planes, $w^T x + b_1 = 0$ and $w^T x + b_2 = 0$. What is the distance between these two hyperplanes?