
Neural Network based
Language Model

Presenters: Tianwei Xing, Kaiwen Huang, Yiwen
Meng, Jiageng Liu

Example of Language Model (e.g. RNN)
Shakespeare samples generator:

● Concatenate all works of Shakespeare - 10,000 character sample into one file
● Train a 3-layer RNN with 512 nodes on each hidden layer
● Character based prediction: sampling speaker’s names and contents

PANDARUS:
Alas, I think he shall be come approached and the day DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

A Neural Probabilistic Language Model

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin

NIPS 2001, JMLR 2003

Tianwei Xing

Background
● Naive Probability Model:

● Conditional probability of upcoming word:

● Chain Rule:

● (n-1)th order Markov assumption:

● N-gram

Curse of
Dimensionality
n=10, |V|=100k,
param = 10^50

Background
Limitations of N-gram:

Calculated from n-gram frequency counts:
(Conditional likelihood of seeing a sub-sequence of length n in available training data)

Limitation: (discrete model ---- each word is a token)
● Incomplete coverage of the training dataset

Vocabulary of size V words: Vn possible n-grams (exponential in n)
● Semantic similarity between word tokens is not exploited

Workarounds:
● Smoothing, interpolation, back-off etc.

Continuous space language model
Ideas:

● Words mapped to vectors in a low-dimensional space
○ A word w is associated with a distributed feature vector (a real-valued vector in [R]m)

● Vector-space representation enables semantic/syntactic similarity between
words/sentences

● NN express the joint probability func of word sequences in terms of word
embeddings.

● Learn simultaneously the word feature vector and the parameters of model
○ A distributed representation for each word: distributed word feature vector
○ The probability func for word sequences, expressed in terms of these representations

● Generalization can be obtained

Vector-space representation & formulation

Originally:
“One-hot” vector
Representation of a word
token at position t in the text
corpus, with vocabulary of
size V

Real-value low dimensional
representation
Represent any word v in the
vocabulary using a vector of
dimension m

Input:
Vector-space
representation of
the tth word
history:
e.g., concatenation
of n-1 vectors of
size D

Output:
Vector-space
representation of
the prediction of
target word wt
(we predict a vector
of size D)

Mapping C

Function g

NPL Model formulation
System diagram

MLP model(1 hidden 1 direct connect)
Parameter set: = (C, θ)
Normalized prob:

Loglikelihood

Loss function: +reg

Input layer

Hidden layer

Output layer

NPL Model Computation
Number of free parameters

≅|V|(nm+h)

Scales linearly with V and n.

Large Model : speedup

● Distributed computing.
● Short list
● Table look-up
● Initialization

Input layer

Hidden layer

Output layer

Simulation result
● The neural network

performs much better
than the smoothed
trigram.

● Metric: perplexity

● More context is useful
● Hidden units help
● Learning word features

jointly is important

Contribution and limitation

● Successfully applies NN to language modeling problem
● Learn embeddings and model params jointly.

● Computationally expensive to train
● Bottleneck: need to evaluate probability of each word over the entire

vocabulary
● Very long training time (days, weeks)

● Ignores long-range dependencies
● Fixed time windows
● RNN?

3 weeks of training (40 CPUs) on
14,000,000 words training set |V|=17964

Long-Short Term Memory Model

Sepp Hochreiter, Jürgen Schmidhuber

Kaiwen Huang

RNN (Recurrent Neural Network)
What’s special about RNN: (from traditional NN)

● Allow sequences of vectors for input and output, no requirement on size.
● Address the issue of hidden state dependency -- Use reasoning from previous

events

Training RNN - BPTT

● BPTT -- Backpropagation Through Time
● Training:

○ Training data:

○ Unfolding a recurrent neural network in time

BPTT

● Training cost:
○ average of costs from each of the time steps
○ Cost from each time step can be computed separately

● Pros: Faster for training RNN than general optimization
techniques

● Cons: More frequent local optima problems than feed-forward
neural network

Success of RNN and Limitation

● RNN has been successful in a great many applications
○ speech recognition, translation, image captioning

Limitation of RNN in long-term dependency

● Sometimes we only need recent previous information, sometimes
further back in time

● RNN loses connection to information with larger gaps
● E.g.

○ the clouds are in the sky
○ I grew up in France… I speak fluent French.

LSTM - an improved RNN

● LSTM -- Long Short Term Memory Network
● LSTM is capable of learning long-term dependencies

○ Remembering information for long periods of time
○ Introduced by Hochreiter & Schmidhuber (1997), were refined and

popularized later

Standard RNN LSTM

http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

LSTM Structure
● Core Idea:

○ Cell State: Ct-1, Ct
○ Gates:

■ Remove or add information to the cell state
■ Composed of:

● Sigmoid neural net layer -- “Forget gate layer”
● A pointwise multiplication operation

Ct-1 Ct

Gate Structure

A Work through of a LSTM module
● Step 1: Determine what information to keep/forget

○ Output a number between 0 and 1 to indicate how much info to keep forget

LSTM steps
● Step 2: Decide what information to store in current cell state

○ A sigmoid layer -- “input gate layer”, to determine which values we will
update

○ A tanh layer creates a vector of new candidates values that could be
added to the state

LSTM steps

● Step 3: Update cell state
○ Forget things that we decided to forget
○ Add new candidate values scaled by how much we decided to update

each state

LSTM steps

● Step 4: Decide what to output
○ A sigmoid layer to decide what parts of the cell state we want to output
○ Put the cell state through tanh layer → push values to -1 to 1; and

multiply output of the sigmoid layer

LSTM variants and performance
● There are also variants of LSTM:

Gers & Schmidhuber (2000) Cho, et al. (2014) Coupled forget and input layers:
Only forget when we are going to
put new things
Only input new values when we
we forget something older

http://arxiv.org/pdf/1406.1078v3.pdf

Character-Word (CW) LSTM Language
Model (LM)

Yiwen Meng

Lyan Verwimp, Joris Pelemans, Hugo Van hamme, Patrick Wambacq

 2017 Annual Conference of Computational Linguistics

Drawbacks of Current LSTM LM
➢ Requires lots of training to optimize parameters for infrequent words

➢ Models do make use of internal structure of words

❖ Example: “Felicity”

❖ Out of vocabulary (OOV)

❖ Suffix: “ity” → input vector → noun

❖ Subword information is significant in performance of LM → Character

→ Happiness

Current work of RNN LMs
● Replace word embedding entirely by character in neural machine translation (NML)

(Ling et al.,2015 and Costa-juss`a and Fonollosa, 2016)

● Subword-level encoder and a character-level decoder for NMT (Chung et al.,2016)

● In dependency parsing, achieve improvements by generating character-level
embeddings with a bidirectional LSTM (Ballesteros et al.,2015)

● Kim et al. (2016) achieve state-of-the-art results in language modeling for several
languages by combining a character-level CNN with highway (Srivastava et al.,
2015) and LSTM layers

● Chen et al. (2015) and Kang et al. (2011) work on models combining words and
Chinese characters to learn embeddings

Character-Word (CW) LSTM LM

● wt: one column vector of encoded

word at time t

● ww: word embedding matrix

● et: word embedding as input for

LSTM

● ct
1: one column vector encoding of

first character added, n characters in

total

● w1
c: word embedding matrix for that

character

● et: word-character embedding as

input for LSTM

Character-Word (CW) LSTM LM
❖ Concatenate character and word embeddings

to feed into LSTM, preserve the order of
characters implicitly

❖ Fix the number of characters to n. If C > n,
only keep the first/last n characters. If C < n,
padded with a special symbol

❖ Keep the order of characters in both forward
(prefix) and backorder (suffix) based on the
need

❖ Character embedding has much smaller size,
thus, leading to small embedding matrix

Example: Multidimensional

Character-Word (CW) LSTM LM

● Weight share between matrix for characters, total number in vocabulary is the
same → Shrink the size of parameters

● Both weight sharing and unsharing are tested

Size of Parameter

Word
embedding

Character- Word embedding Character- Word
embedding with weight
sharing

V: vocabulary size >> C: character size → Shrink embedding size

Test CW LSTM Model
● Tensor flow
● small model: 2 hidden layers, 200 units
● large model: 2 hidden layers, 560 units

Training Validation Test Character Size

English(PTB) 900K 70K 80K 48

Dutch (CGN) 1.4M 180K 190K 88

Hidden units Word model C-W model

Small 200 200

Large 650 650

Hidden units Word model C-W model

Small 200 175

Large 650 475

Baseline I: same hidden units Baseline II: Approximately same parameters

Results: Small model, Large model (validation)

● Performance of CW models is significantly higher than word models for same
hidden units

● In small models, with same number of parameters, performance of CW models
varies based on number of characters, and size of embedding

● For large models, with same number of parameters, almost all CW models
performs better than word models

Results: Order of Large CW Models

● Backorder CW models performs the best, while increase number of character in
both forward and back order would decrease the performance for large n

● In small models, 3 character with embedding size of 5 performs the best
● In large models, 6 characters with 3 in forward order and 3 in backward order

performs the best

Validation Test

Results: Dutch

● In both small and large models, the performance of CW models are significantly
higher for both same number of hidden units and size of parameter

● In the test set, 3 character with embedding size of 10 is best in small models
while 6 character with backorder of embedding size of 25 is the best in large
models

Validation

Test

Results: Share Weight

● Results are averaged over number of character from 1 to 10
● Number in the bracket is standard deviation
● CW models with weight sharing are better than baseline word models but are not

different for CW models
● Meaning that the position of each character has the significance

Conclusion
❖ Subword information is also an important factor for LM, so concatenate character

and word embedding

❖ CW models can both reduce the size of parameter matrix and increase the
performance

❖ Preserve the order of characters in each word plays an important role in LSTM LM

❖ Results show characters can convey different meanings based on the position,
which indicates the decision of weight sharing for each language

Regularizing and Optimizing
LSTM Language Models

Stephen Merity, Nitish Shirish Keskar, Richard Socher

Salesforce Research

Jiageng Liu

Train LSTM with SGD
● Stochastic Gradient Descent (SGD)

○ In each training iteration…
■ take one random data and update one gradient step
■ using the random approximation of the true gradient

● Good side
○ Fast (no traversing the whole dataset)
○ Avoid local minima/saddle points (due to the randomness)
○ Better generalization (avoid overfitting the training dataset)

● Bad side
○ Result keeps wiggling near the optimal

Averaged SGD
● Idea: average up the wiggles

○ reduces the variance of the iterates
○ better estimate of the global optimal
○ proved to achieve the best possible convergence

without additional info (Polyak 1992)

● Problem: when to start averaging?
○ too late - not enough acceleration
○ too early - introduce “bad” iterates at the start
○ idea: when the loss function starts to plateau

orange: regular SGD
green: early average
blue: late average

Non-monotonically Triggered ASGD
● Idea: record whether the loss (perplexity) has stopped dropping

○ however, stochasticity may cause the loss to fluctuate anyway
○ algorithm: check if the loss decreases every several iterates
○ specific strategy may vary

Overfitting

complex structure many parameters to train
(8 fc matrices in one layer)

Regularize with DropConnect
● Idea: randomly set some hidden-to-hidden

weights to zeros during training
● prevent the network from relying on certain

neuron weights too much
● In BPTT, the same individual dropped weights

remain dropped for the entirety of the forward
and backward pass

● focus on dropping recurrent weights which are
more likely to “accumulate” overfitting over time

Other techniques
● Variable length BPTT

○ batch-SGD training: not backpropagate the information from the starting word to the last batch
○ solution: randomly choose batch sizes
○ tradeoff: too much variability → less efficient training on GPU

● Embedding dropout
○ dropout on the embedding matrix at a word level for regularization
○ remaining embeddings are scaled up to compensate
○ more robust to change of specific words

{Four score and seven years ago our fathers brought} {forth on this continent, a new nation,
conceived} {in Liberty, and dedicated to the proposition that all} {men are created equal...

Other techniques
● Weight tying

○ reuse weights from input word embedding as the output classification (softmax)
○ much fewer parameters to train
○ theoretical motivation

● (Temporal) Activation Regularization
○ Use L2 decay on

■ the individual unit activations to prevent large spikes (AR)
■ minimizes differences between states to prevent large changes (TAR)

○ only applied to the output of the final RNN layer (not explained in the paper)

Other models improvement
● Neural Cache Model

○ store recent hidden activations and use them as representation for the context
○ exploit the long-range dependency of words in a document
○ “tiger” consists 2.8% of words in the Wikipedia page “tiger”, compared to 0.0037% overall

● Pointer Sentinel Model
○ Incorporate pointer (reference to previous words) and RNN (vocabulary embeddings)
○ Let the pointer (sentinel) decide whether it’s confidence enough to skip scanning the vocabulary
○ Avoid needing to learn to store the identity of the token to be produced
○ Helps solving the rare words/out-of-vocabulary problems

Results
(PTB)

Model Ablation
Remove each one of the
techniques to see how worse
the model performs.

