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Example of Language Model (e.g. RNN)
Shakespeare samples generator:

● Concatenate all works of Shakespeare - 10,000 character sample into one file
● Train a 3-layer RNN with 512 nodes on each hidden layer
● Character based prediction: sampling speaker’s names and contents

PANDARUS:
Alas, I think he shall be come approached and the day DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.
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Yoshua Bengio,   Réjean Ducharme,   Pascal Vincent,  Christian Jauvin

NIPS 2001, JMLR 2003

Tianwei Xing



Background
● Naive Probability Model: 

● Conditional probability of upcoming word: 

● Chain Rule:

● (n-1)th order Markov assumption:

● N-gram

Curse of 
Dimensionality
n=10, |V|=100k, 
param = 10^50



Background
Limitations of N-gram:

Calculated from n-gram frequency counts:
( Conditional likelihood of seeing a sub-sequence of length n in available training data )

Limitation:  (discrete model ---- each word is a token)
● Incomplete coverage of the training dataset

Vocabulary of size V words: Vn possible n-grams (exponential in n)
● Semantic similarity between word tokens is not exploited

Workarounds:
● Smoothing, interpolation, back-off etc.



Continuous space language model
Ideas:

● Words mapped to vectors in a low-dimensional space
○ A word w is associated with a distributed feature vector (a real-valued vector in [R]m  )

● Vector-space representation enables semantic/syntactic similarity between 
words/sentences

● NN express the joint probability func of word sequences in terms of word 
embeddings.

● Learn simultaneously the word feature vector and the parameters of model
○ A distributed representation for each word: distributed word feature vector
○ The probability func for word sequences, expressed in terms of these representations

● Generalization can be obtained



Vector-space representation & formulation

Originally: 
“One-hot” vector
Representation of a word 
token at position t in the text 
corpus, with vocabulary of 
size V

Real-value low dimensional 
representation
Represent any word v in the 
vocabulary using a vector of 
dimension m

Input:
Vector-space 
representation of 
the tth word 
history:
e.g., concatenation 
of n-1 vectors of 
size D

Output:
Vector-space 
representation of 
the prediction of 
target word wt
(we predict a vector 
of size D)

Mapping C

Function g



NPL Model formulation
System diagram

MLP model(1 hidden 1 direct connect)
Parameter set: ᵐ = (C, θ)
Normalized prob:

Loglikelihood

Loss function: +reg

Input layer

Hidden layer

Output layer



NPL Model Computation
Number of free parameters 

≅|V|(nm+h)

Scales linearly with V and n.

Large Model : speedup

● Distributed computing.
● Short list
● Table look-up
● Initialization

Input layer

Hidden layer

Output layer



Simulation result
● The neural network 

performs much better 
than the smoothed 
trigram.

● Metric: perplexity

● More context is useful
● Hidden units help
● Learning word features 

jointly is important



Contribution and limitation

● Successfully applies NN to language modeling problem
● Learn embeddings and model params jointly.

● Computationally expensive to train
● Bottleneck: need to evaluate probability of each word over the entire 

vocabulary
● Very long training time (days, weeks)

● Ignores long-range dependencies
● Fixed time windows
● RNN?

3 weeks of training (40 CPUs) on
14,000,000 words training set |V|=17964
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RNN (Recurrent Neural Network)
What’s special about RNN: (from traditional NN)

● Allow sequences of vectors for input and output, no requirement on size.
● Address the issue of hidden state dependency -- Use reasoning from previous 

events



Training RNN - BPTT

● BPTT -- Backpropagation Through Time
● Training: 

○ Training data:

 

○ Unfolding a recurrent neural network in time



BPTT

● Training cost: 
○ average of  costs from each of the time steps
○ Cost from each time step can be computed separately

● Pros: Faster for training RNN than general optimization 
techniques

● Cons: More frequent local optima problems than feed-forward 
neural network



Success of RNN and Limitation

● RNN has been successful in a great many applications 
○ speech recognition, translation, image captioning

Limitation of RNN in long-term dependency

● Sometimes we only need recent previous information, sometimes 
further back in time

● RNN loses connection to information with larger gaps 
● E.g. 

○ the clouds are in the sky
○ I grew up in France… I speak fluent French.



LSTM - an improved RNN 

● LSTM -- Long Short Term Memory Network
● LSTM is capable of learning long-term dependencies

○ Remembering information for long periods of time
○ Introduced by Hochreiter & Schmidhuber (1997), were refined and 

popularized later

Standard RNN LSTM

http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf


LSTM Structure
● Core Idea:

○ Cell State: Ct-1, Ct 
○ Gates:

■ Remove or add information to the cell state
■ Composed of:

● Sigmoid neural net layer -- “Forget gate layer”
● A pointwise multiplication operation

Ct-1 Ct

Gate Structure  



A Work through of a LSTM module
● Step 1: Determine what information to keep/forget

○ Output a number between 0 and 1 to indicate how much info to keep forget 



LSTM steps
● Step 2: Decide what information to store in current cell state

○ A sigmoid layer -- “input gate layer”, to determine which values we will 
update

○ A tanh layer creates a vector of new candidates values that could be 
added to the state



LSTM steps

● Step 3: Update cell state 
○ Forget things that we decided to forget
○ Add new candidate values scaled by how much we decided to update 

each state



LSTM steps

● Step 4:  Decide what to output
○ A sigmoid layer to decide what parts of the cell state we want to output
○ Put the cell state through tanh layer → push values to -1 to 1; and 

multiply output of the sigmoid layer 



LSTM variants and performance
● There are also variants of LSTM:

Gers & Schmidhuber (2000)  Cho, et al. (2014) Coupled forget and input layers:
Only forget when we are going to 
put new things 
Only input new values when we 
we forget something older

http://arxiv.org/pdf/1406.1078v3.pdf
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Drawbacks of Current LSTM LM
➢ Requires lots of training to optimize parameters for infrequent words

➢ Models do make use of internal structure of words

❖ Example: “Felicity”

❖ Out of vocabulary (OOV)

❖ Suffix: “ity” → input vector → noun 

❖ Subword information is significant in performance of LM → Character

→ Happiness



Current work of RNN LMs
● Replace word embedding entirely by character in neural machine translation (NML) 

(Ling et al.,2015 and Costa-juss`a and Fonollosa, 2016)

● Subword-level encoder and a character-level decoder for NMT (Chung et al.,2016)

● In dependency parsing, achieve improvements by generating character-level 
embeddings with a bidirectional LSTM (Ballesteros et al.,2015)

● Kim et al. (2016) achieve state-of-the-art results in language modeling for several 
languages by combining a character-level CNN with highway (Srivastava et al., 
2015) and LSTM layers

● Chen et al. (2015) and Kang et al. (2011) work on models combining words and 
Chinese characters to learn embeddings 



Character-Word (CW) LSTM LM

● wt: one column vector of encoded 

word at time t

● ww: word embedding matrix

● et: word embedding as input for 

LSTM

● ct
1: one column vector encoding of 

first character added, n characters in 

total

● w1
c: word embedding matrix for that 

character

● et: word-character embedding as 

input for LSTM



Character-Word (CW) LSTM LM
❖ Concatenate character and word embeddings 

to feed into LSTM, preserve the order of 
characters implicitly

❖ Fix the number of characters to n. If C > n, 
only keep the first/last n characters. If C < n, 
padded with a special symbol

❖ Keep the order of characters in both forward 
(prefix) and backorder (suffix) based on the 
need

❖ Character embedding has much smaller size, 
thus, leading to small embedding matrix

Example: Multidimensional



Character-Word (CW) LSTM LM

● Weight share between matrix for characters, total number in vocabulary is the 
same → Shrink the size of parameters

● Both weight sharing and unsharing are tested 

Size of Parameter

Word 
embedding

Character- Word embedding Character- Word 
embedding with weight 
sharing

V: vocabulary size >> C: character size → Shrink embedding size 



Test CW LSTM Model
● Tensor flow
● small model: 2 hidden layers, 200 units
● large model: 2 hidden layers, 560 units

Training Validation Test Character Size

English(PTB) 900K 70K 80K 48

Dutch (CGN) 1.4M 180K 190K 88

Hidden units Word model C-W model

Small 200 200

Large 650 650

Hidden units Word model C-W model

Small 200 175

Large 650 475

Baseline I: same hidden units Baseline II: Approximately same parameters



Results: Small model, Large model (validation)

● Performance of CW models is significantly higher than word models for same 
hidden units

● In small models, with same number of parameters, performance of CW models 
varies based on number of characters, and size of embedding

● For large models, with same number of parameters, almost all CW models 
performs better than word models



Results: Order of Large CW Models

● Backorder CW models performs the best, while increase number of character in 
both forward and back order would decrease the performance for large n

● In small models, 3 character with embedding size of 5 performs the best
● In large models, 6 characters with 3 in forward order and 3 in backward order 

performs the best

Validation Test



Results: Dutch

● In both small and large models, the performance of CW models are significantly 
higher for both same number of hidden units and size of parameter

● In the test set, 3 character with embedding size of 10 is best in small models 
while 6 character with backorder of embedding size of 25 is the best in large 
models

Validation

Test



Results: Share Weight

● Results are averaged over number of character from 1 to 10
● Number in the bracket is standard deviation
● CW models with weight sharing are better than baseline word models but are not 

different for CW models
● Meaning that the position of each character has the significance



Conclusion
❖ Subword information is also an important factor for LM, so concatenate character 

and word embedding 

❖ CW models can both reduce the size of parameter matrix and increase the 
performance

❖ Preserve the order of characters in each word plays an important role in LSTM LM

❖ Results show characters can convey different meanings based on the position, 
which indicates the decision of weight sharing for each language
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Train LSTM with SGD
● Stochastic Gradient Descent (SGD)

○ In each training iteration…
■ take one random data and update one gradient step
■ using the random approximation of the true gradient

● Good side
○ Fast (no traversing the whole dataset)
○ Avoid local minima/saddle points (due to the randomness)
○ Better generalization (avoid overfitting the training dataset) 

● Bad side
○ Result keeps wiggling near the optimal



Averaged SGD
● Idea: average up the wiggles

○ reduces the variance of the iterates
○ better estimate of the global optimal
○ proved to achieve the best possible convergence 

without additional info (Polyak 1992)

● Problem: when to start averaging?
○ too late - not enough acceleration
○ too early - introduce “bad” iterates at the start
○ idea: when the loss function starts to plateau

orange: regular SGD
green: early average
blue: late average



Non-monotonically Triggered ASGD
● Idea: record whether the loss (perplexity) has stopped dropping

○ however, stochasticity may cause the loss to fluctuate anyway
○ algorithm: check if the loss decreases every several iterates
○ specific strategy may vary



Overfitting

complex structure  many parameters to train
(8 fc matrices in one layer)



Regularize with DropConnect
● Idea: randomly set some hidden-to-hidden 

weights to zeros during training
● prevent the network from relying on certain 

neuron weights too much
● In BPTT, the same individual dropped weights 

remain dropped for the entirety of the forward 
and backward pass

● focus on dropping recurrent weights which are 
more likely to “accumulate” overfitting over time



Other techniques
● Variable length BPTT

○ batch-SGD training: not backpropagate the information from the starting word to the last batch
○ solution: randomly choose batch sizes
○ tradeoff: too much variability → less efficient training on GPU

● Embedding dropout
○ dropout on the embedding matrix at a word level for regularization
○ remaining embeddings are scaled up to compensate
○ more robust to change of specific words

{Four score and seven years ago our fathers brought} {forth on this continent, a new nation, 
conceived} {in Liberty, and dedicated to the proposition that all} {men are created equal...



Other techniques
● Weight tying

○ reuse weights from input word embedding as the output classification (softmax)
○ much fewer parameters to train
○ theoretical motivation

● (Temporal) Activation Regularization
○ Use L2 decay on 

■ the individual unit activations to prevent large spikes (AR)
■ minimizes differences between states to prevent large changes (TAR)

○ only applied to the output of the final RNN layer (not explained in the paper)



Other models improvement
● Neural Cache Model

○ store recent hidden activations and use them as representation for the context
○ exploit the long-range dependency of words in a document
○ “tiger” consists 2.8% of words in the Wikipedia page “tiger”, compared to 0.0037% overall

● Pointer Sentinel Model
○ Incorporate pointer (reference to previous words) and RNN (vocabulary embeddings)
○ Let the pointer (sentinel) decide whether it’s confidence enough to skip scanning the vocabulary
○ Avoid needing to learn to store the identity of the token to be produced
○ Helps solving the rare words/out-of-vocabulary problems



Results
(PTB)



Model Ablation
Remove each one of the 
techniques to see how worse 
the model performs.


