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Announcements

v Waiting list: If you’re not enrolled, please sign up. 

v We will use Piazza as an online discussion 
platform. Please sign up here: 
piazza.com/ucla/fall2017/cs269
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This Lecture

vSupervised Learning
v Linear Classifiers

vPerceptron Algorithm
vSupport Vector Machine
vLogistic Regression 

vOptimization in machine learning
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The Badges game

v Conference attendees to the ICML 1994 were 
given name badges labeled with + or −.

v What function was used to assign these labels? 

+	Naoki	Abe - Eric	Baum
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Training data

+	Naoki	Abe
- Myriam Abramson
+	David	W.	Aha
+	Kamal	M.	Ali
- Eric	Allender
+	Dana	Angluin
- Chidanand Apte
+	Minoru	Asada
+	Lars	Asker
+	Javed Aslam
+	Jose	L.	Balcazar
- Cristina	Baroglio

+	Peter	Bartlett
- Eric	Baum
+	Welton Becket
- Shai Ben-David
+	George	Berg
+	Neil	Berkman
+	Malini Bhandaru
+	Bir Bhanu
+	Reinhard Blasig
- Avrim Blum
- Anselm	Blumer
+	Justin	Boyan

+	Carla	E.	Brodley
+	Nader	Bshouty
- Wray	Buntine
- Andrey Burago
+	Tom	Bylander
+	Bill	Byrne
- Claire	Cardie
+	John	Case
+	Jason	Catlett
- Philip	Chan
- Zhixiang Chen
- Chris	Darken
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Raw test data

Gerald	F.	DeJong
Chris	Drummond
Yolanda	Gil
Attilio Giordana
Jiarong Hong
J.	R.	Quinlan

Priscilla	Rasmussen
Dan	Roth
Yoram Singer
Lyle	H.	Ungar
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Why we need machine learning?

vThere is no (or limited numbers of) human 
expert for some problems
vE.g.: Identify DNA binding sites, predicting disease 

progression, predicting protein folding structure
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Why we need machine learning?

vThere is no (or limited numbers of) human 
expert for some problems

vHumans can perform a task, but can’t 
describe how they do it
vE.g.: Object recognition
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Why we need machine learning?

vThere is no (or limited numbers of) human 
expert for some problems

vHumans can perform a task, but can’t 
describe how they do it

vThe desired function is hard to be written 
down in a closed form 
vE.g.,: predict stock price 
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Output

y∈Y

An	item	y
drawn	from	a	label	

space	Y

Input

x∈X

An	item	x
drawn	from	an	
instance	space	X

Learned	Model
y	=	𝑓 𝑥

Supervised learning

10

Target	function
y	=	𝑓∗(x)
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Input

x∈X

An	item	x
drawn	from	an	
instance	space	X

Supervised learning

11

x	is	represented	in	a	feature	space
- Typically	𝑥 ∈ 0,1 ( or	𝑅*
- Usually	represented	as	a	vector
- We	call	it	input	vector
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Output

y∈Y

An	item	y
drawn	from	a	label	

space	Y

Supervised learning

12

y	is	represented	in	output	space	
(label	space)
Different	kinds	of	output:

• Binary	classification:	
𝑦	 ∈ {-1,1}	

• Multiclass	classification:
𝑦 ∈ {1,2,3, …𝐾}

• Regression:
𝑦 ∈ 𝑅

• Structured	output
𝑦 ∈ 1,2,3, …𝐾 *
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Output

y∈Y

An	item	y
drawn	from	a	label	

space	Y

Input

x∈X

An	item	x
drawn	from	an	
instance	space	X

Learned	Model
y	=	𝑓 𝑥

Learning the mapping

13

Target	function
y	=	𝑓∗(x)
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Goal

vFind a good approximation of 𝑓∗ ⋅
vGood in what sense?
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Under-fitting and over-fitting

vWhich classifier (blue line) is the best one?
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Bias V.S. Variance

v Remember, training data are subsamples drawn from 
the true distribution

v Exam strategy:
v Study every chapter well

v A+: Low var & bias
v Study only a few chapters

v A+? B? C? Low bias; High var
v Study every chapter roughly

v B+:  Low var; high bias
v Go to sleep 

v B ~D: High var, high bias
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Questions of interest

v Representation
v How to represent x, y (and latent factors)

v Modeling
v What assumptions we made
v i.e., what is the hypothesis set of 𝑓	?

v Algorithms
v (learn) Give data, how to learn 𝑓?
v (inference) Give test instance x and  𝑓, how to 

evaluate 𝑓(x)?
v Learning protocols

v What is the goal of the learning algorithm?

CS6501 Lecture 2 17



Different learning protocols 
(more technical terms)

vSupervision signals?
vSupervised learning, semi-supervised learning, 

unsupervised learning, bandit feedback

vWhat to be optimized?
vBatch learning: minimize the risk 

(expected average loss)
vOnline learning:

Receive one sample and make prediction
Receive the label; then update
minimize the accumulated loss
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Linear classification
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Linear classifiers

vFor now, we consider binary classification
vGiven a training set 𝒟 = { 𝒙, 𝑦 }, find a  

linear threshold units classify an example 𝑥
using the classification rule:
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The geometry interpretation
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A simple trick to remove the bias term b

					𝑤8𝑥 + 𝑏

= 𝑤8	𝑏 ⋅ 	 𝑥1
= 𝑤; ⋅ 𝑥<

𝑤; = 𝑤8	𝑏 8

𝑥< =		 𝑥8		1 8			
For simplicity, I’ll write 𝑤; and 𝑥< as 𝑤 and 𝑥
when there is no confusion  
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Some data are not linearly separable

CS6501 Lecture 2 23



But they can be made liner
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Using	a	different	representation
e.g.,	feature	conjunctions,	

non-linear	mapping



Exercise: can you make these data 
points linearly separable?
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Exercise: can you make these data 
points linearly separable?
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Adding	feature	𝑥=	𝑥>



Linear classifiers

v Let’s take a look at a few linear classifiers
vWe will show later, they can be written in 

the same framework!

vPerceptron
v (Linear) Support Vector Machines
v Logistic Regression
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The Perceptron Algorithm [Rosenblatt 1958]

vGoal: find a separating hyperplane
vCan be used in an online setting:

considers one example at a time
vConverges if data is separable

-- mistake bound 
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The Perceptron Algorithm [Rosenblatt 1958]

Prediction:  𝑦?@A? ← sg𝑛(𝒘H𝒙?@A?)
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1.
2.
3.
4.
5.
6.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙, 𝑦) in 𝒟:

𝑦̂ = sg𝑛(𝒘H𝒙) (predict)
if 𝑦̂ ≠ 𝑦, 𝒘←𝒘+𝜂𝑦𝒙 (update)

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

Learning rate



The Perceptron Algorithm [Rosenblatt 1958]

Prediction:  𝑦?@A? ← sg𝑛(𝒘H𝒙?@A?)
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1.
2.
3.
4.
5.
6.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

if 𝑦 𝒘H𝒙 < 𝟎
								𝒘 ←𝒘+𝜂𝑦𝒙

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }



Geometry Interpretation 

31
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Weight	vector	points	to	the	positive side



Perceptron in action
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Convergence of Perceptron

vMistake bound
v If data is linearly separable (i.e., a good linear 

model exists), the perceptron will converge 
after a fixed number of mistakes [Novikoff 1962]
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Marginal Perceptron -- Motivation

vWhich separating hyper-plane is better?
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Smaller	(



The Perceptron Algorithm [Rosenblatt 1958]

Prediction:  𝑦?@A? ← sg𝑛(𝒘H𝒙?@A?)
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1.
2.
3.
4.
5.
6.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

if 𝑦 𝒘H𝒙 < 𝟎
								𝒘 ←𝒘+𝜂𝑦𝒙

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }



The Perceptron Algorithm [Rosenblatt 1958]

Prediction:  𝑦?@A? ← sg𝑛(𝒘H𝒙?@A?)
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1.
2.
3.
4.
5.
6.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

if 𝑦 𝒘H𝒙 < 𝛿
								𝒘 ←𝒘+𝜂𝑦𝒙

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }



How about batch setting?

v Learning as loss minimization
1. Collect training data			𝐷S = { 𝒙, 𝑦 }
2. Pick a hypothesis class
v E.g., linear classifiers, deep neural networks

3. Choose a loss function
v Hinge loss, negative log-likelihood
v We can impose a preference (i.e., prior)  over 

hypotheses, e.g., simpler is better
4. Minimize the expected loss
v SGD, coordinate descent, Newton methods, LBFGS
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Batch learning setup

v 𝐷S = { 𝒙, 𝑦 } drawn from a fixed, unknown 
distribution 𝒟	

v A hidden oracle classifier 𝑓∗, 𝑦 = 𝑓∗(𝑥)
v We wish to find a hypothesis 𝑓 ∈ 𝐻 that mimics 𝑓∗

v We define a loss function 𝐿(𝑓 𝑥 , 𝑓∗ 𝑥 ) that 
penalizes mistakes

v What is the ideal 𝑓?
argmin

[∈\
𝐸^~`	 𝐿 𝑓 𝑥 , 𝑓∗ 𝑥

expected loss
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Batch learning setup

v 𝐷S = { 𝒙, 𝑦 } drawn from a fixed, unknown distribution 𝒟	
v A hidden oracle classifier 𝑓∗, 𝑦 = 𝑓∗(𝑥)
v We wish to find a hypothesis 𝑓 ∈ 𝐻 that mimics 𝑓∗

v We define a loss function 𝐿(𝑓 𝑥 , 𝑓∗ 𝑥 ) that penalizes 
mistakes

v What is the ideal 𝑓?

min
[∈\

𝐸^~`	 𝐿ab= 𝑓 𝑥 , 𝑓∗ 𝑥 = 	min
[∈\

	𝐸^~`[	#𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑠]	
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Let’s	define	
𝐿mb= 𝑦, 𝑦n = 1		𝑖𝑓	𝑦 ≠ 𝑦’
																											0		𝑖𝑓	𝑦 = 𝑦’



How can we learn f from 𝐷S

v We don’t know 𝐷, we only see samples in 𝐷S

v Instead, we minimize empirical loss
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min
[∈\

1
𝐷S
∑ ^,p ∈S̀ 𝐿 𝑓 𝑥 , 𝑦



How can we prevent over-fitting?

v With sufficient data,  𝐷S ≈ D 
v However, if data is insufficient ⇒ overfitting
v We can impose a preference over models

v We will discuss the choices of 	𝑅 𝑓 later

CS6501 Lecture 2 41

min
[∈\

	𝑅 𝑓 		+		
1
𝐷S
∑ ^,p ∈S̀ 𝐿 𝑓 𝑥 , 𝑦



How about the loss function?

vUsually, we cannot minimize 0-1 loss
v It is a combinatorial optimization problem: NP-hard

v Idea: minimizing its upper-bound
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𝑦	𝑓(𝑥)

𝐿(
𝑦,
𝑓
𝑥
)



How about the loss function?

vUsually, we cannot minimize 0-1 loss
v It is a combinatorial optimization problem: NP-hard

v Idea: minimizing its upper-bound
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𝑦	𝑓(𝑥)

𝐿(
𝑦,
𝑓
𝑥
)



Many choices

v We are minimizing with R, L, H with your choice 

v Let consider H is a set of d-dimensional  linear function 

v H can be parameterized as
𝑓 𝑥 : 	𝑤8𝑥 ≥ 0 ,𝑤 ∈ 𝑅u
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min
[∈\

	𝑅 𝑓 		+		
1
𝐷S
∑ ^,p ∈S̀ 𝐿 𝑓 𝑥 , 𝑦



Back to Linear model

v We are minimizing with R, L, H with your choice 

v Let decide H to be a set of d-dimensional  linear 
function 

v H can be parameterized as
𝑓 𝑥 : 	𝑤8𝑥 ≥ 0 ,𝑤 ∈ 𝑅u

v We are going to fine the best one based on  𝐷S
v i.e., find the best setting of w and b
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min
[∈\

	𝑅 𝑓 		+		
1
𝐷S
∑ ^,p ∈S̀ 𝐿 𝑓 𝑥 , 𝑦



Rewrite our optimization problem

v Minimizing the empirical loss:

v Minimizing the empirical loss with linear function

v What choices of R and L we have?
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min
v∈wx

	𝑅 𝑤 		+		
1
𝐷S
∑ ^,p ∈S̀ 𝐿 𝑥, 𝑤, 𝑦

min
[∈\

	𝑅 𝑓 		+		
1
𝐷S
∑ ^,p ∈S̀ 𝐿 𝑓 𝑥 , 𝑦



Many choices of loss function (L)
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Many choices of R(w)

vMinimizing the empirical loss with linear 
function

vPrefer simpler model: (how?)
v Sparse: 
𝑅 𝑤 = #non-zero elements in w   (L0 regularizer)
𝑅 𝑤 = ∑ 𝑤y�

y (L1 regularizer)
v Gaussian prior (large margin w/ hinge loss):
𝑅 𝑤 = ∑ 𝑤y>�

y = 𝑤8𝑤 (L2 regularizer)
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min
v∈wx

	𝑅 𝑤 		+		
1
𝐷S
∑ ^,p ∈S̀ 𝐿 𝑥, 𝑤, 𝑦



Support Vector Machines 
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CMU	ML	protest



Support Vector Machines (SVMs)

vR(w): l2-loss, 𝐿 𝑤, 𝑥, 𝑦 : hinge loss

vMaximizing margin  (why?!!)
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min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱�))�

y



The hinge loss
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Let’s view it from another direction

v SVM learns a model 𝒘 on 𝒟 = { 𝒙𝒊, 𝑦y } by 
solving:
min
𝒘,�

			=
>
𝒘8𝒘

s.t 				y�(𝐰�𝐱� + 𝑏) ≥ 1, ∀ 𝒙y, 𝑦y ∈ 𝒟
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(Hard	SVM)

Why	the	margin	is	 >
||v	||

?

argmax >
||v	||

= arg 	min	 ||𝑤	||
= arg 	min	 ||𝑤	||>
		= arg 	min	 		𝑤8𝑤



Soft SVMs

v Data is not separable ⇒ hard SVM fails
Why?

v Introduce a set of slack variable {𝜉y}
⇒ relax the constraints

v Given	𝒟 = 𝒙𝒊, 𝑦y , soft SVM solves:
min
𝒘,�,𝝃

			=
>
𝒘8𝒘 + 𝐶 ∑ 𝜉y�

y

s. t			y�(𝐰�𝐱� + 𝑏) ≥ 1 − 𝜉y;	𝜉y ≥ 0						∀𝑖	
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(Soft	SVM)

penalty	parameter



An alternative formulation

min
𝒘,�,𝝃

			=
>
𝒘8𝒘 + 𝐶 ∑ 𝜉y�

y

s. t			y�(𝐰�𝐱� + 𝑏) ≥ 1 − 𝜉y;	𝜉y ≥ 0						∀𝑖	
vRewrite the constraints:

𝜉y ≥ 1 −	y�(𝐰�𝐱� + 𝑏);	𝜉y ≥ 0 ∀𝑖	
v In the optimum, 𝜉y = max(0,	 1 −	y�(𝐰�𝐱� + 𝑏))

vSoft SVM can be rewritten as:
min
𝒘,�

			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱� + 𝑏))�

y
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Empirical	lossRegularization		term



An alternative formulation

min
𝒘,�,𝝃

			=
>
𝒘8𝒘 + 𝐶 ∑ 𝜉y�

y

s. t			y�(𝐰�𝐱� + 𝑏) ≥ 1 − 𝜉y;	𝜉y ≥ 0						∀𝑖	
vRewrite the constraints:

𝜉y ≥ 1 −	y�(𝐰�𝐱� + 𝑏);	𝜉y ≥ 0 ∀𝑖	
v In the optimum, 𝜉y = max(0,	 1 −	y�(𝐰�𝐱� + 𝑏))

vSoft SVM can be rewritten as:
min
𝒘,�

			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱� + 𝑏))�

y
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Empirical	lossRegularization		term

We	can	simply	”b”	using	the	trick
However,	we	will	add	b	into	the	regularization	term
It	is	often	okay,	if	we	have	many	features	



Balance between regularization and 
empirical loss
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Balance between regularization and 
empirical loss

59

(DEMO)
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Regularized loss minimization 
v L1-Loss SVM

						min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱�))�

y

v L2-Loss SVM
	min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,1 −	y�(𝐰�𝐱�))>�

y

v Logistic Regression  (regularized)

					min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ log( 1 + 𝑒b��(𝐰�𝐱�))�

y

v Loss over training data + regularizer
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Loss Functions
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Logistic Regression 

Regression                    Logistic regression 
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Logistic	function



logistic function / sigmoid function

vWhen 𝑧 → ∞ what is 𝜎 𝑧 ?
vWhen 𝑧 → −∞ what is 𝜎 𝑧 ?
vWhen 𝑧 = 0 what is 𝜎 𝑧 ?
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Why sigmoid?
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Probabilistic Interpretation

min
𝒘
			
1
2𝒘

8𝒘 + 𝐶�log( 1 + 𝑒b��(𝐰�𝐱�))
�

y

Assume labels are generated using the following 
probability distribution:
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How	to	make	prediction?
Predict	y=1	if	P(y=1|x,w	)	>	p	(y=	-1|x,	w)



Decision boundary?

vThe decision boundary?
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Alternative view

v Predict y=1 if P(y=1|x,w ) > P(y= -1|x, w)

v When does this happen?

v
=

=�@��	(bv�^)
> 0.5

⇒ 1 + exp −𝑤8𝑥 < 2
⇒ exp −𝑤8𝑥 < 1
⇒ 𝑤8𝑥 > 0
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Maximum likelihood estimation 

vProbabilistic model assumption:

v The log-likelihood of seeing a dataset 
D = {(x , y )} if the true weight vector was w: 
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𝑃 𝐷 𝑤 = Πy	𝑃 𝑦y 𝑥y, 𝑤
⇒ log𝑃 𝐷 𝑤 = ∑y log 𝑃 𝑦y 𝑥y, 𝑤 	



Minimizing negative log-likelihood

v Log likelihood

v Logistic regression

v Let’s add some prior
vSimpler is better ⇒ add Gaussian Prior 
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min
𝒘,�

			∑ log( 1 + 𝑒b��(𝐰�𝐱�))�
y



Add Gaussian Prior

v Simpler is better ⇒ add Gaussian Prior 
v Suppose each element in w is drawn 

independently from the normal distribution 
centered at zero with variance 𝜎>

v Bias towards smaller weights
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Regularized Logistic regression

v Remember we are in the log space

v Put them together
v 𝑃 𝑤 𝐷 	∝ 𝑃 𝑤,𝐷 = 𝑃 𝐷	 𝑤 𝑃(𝑤)
v Learning: 

Find weight vector by maximizing the posterior 
distribution P(w | D) 
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Maximum a posteriori estimation

v Put them together
v 𝑃 𝑤 𝐷 	∝ 𝑃 𝑤,𝐷 = 𝑃 𝐷	 𝑤 𝑃(𝑤)

v Learning:  Find weight vector by maximizing the 
posterior distribution P(w | D) 
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Log-likelihoodprior

	min
𝒘
			
1
2𝒘

8𝒘 + 𝐶�log( 1 + 𝑒b��(𝐰�𝐱�))
�

y



Regularized loss minimization 
v L1-Loss SVM

						min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱�))�

y

v L2-Loss SVM
	min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,1 −	y�(𝐰�𝐱�))>�

y

v Logistic Regression  (regularized)

					min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ log( 1 + 𝑒b��(𝐰�𝐱�))�

y

v Loss over training data + regularizer
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How to learn 
(how to optimize the objective function?)

min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱�))�

y

v This function is convex
v Many convex optimization methods can be used

vStochastic (sub)-gradient descent
vCoordinate descent methods
vNewton methods
vLBFGS
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Convexity
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Non convex minimization is hard

vYou may end up with some local minimum
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Convex optimization is relatively easy

vEnsure that there are no local minima
vNote: need special design for functions that 

are not differentiable (e.g., hinge loss)
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Different optimization techniques

CS6501 Lecture 2 79

Results	from	http://www.cs.virginia.edu/~kc2wc/papers/ChangHsLi08.pdf

Some	methods	(e.g.,	SGD,	CD)	
are	fast	in	the	early	stage	of	
optimization

Some	methods	(e.g.,	Newton	
methods)	converge	faster



Gradient descent
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Why not gradient descent?

vFor some functions, gradient may not exist

vSolution: use sub-gradient
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min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱�))�

y

𝛻𝑓y 𝑤 ≡ § 𝑤																					𝑖𝑓	y�(𝐰�𝐱�) > 1
𝑤 − 𝐶′𝑦y𝑥y			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																			

,	

	

		𝑓 𝑤 = 	 =
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�𝐰�𝐱�)�

y

											= 	 𝟏
|𝑫|
	∑ (	=

>
𝒘8𝒘 + 𝐶′max(0,	 1 −	y�𝐰�𝐱�)�

y )

≡ 𝟏
𝑫
∑ 𝑓y 𝑤�
y

𝛻𝑓 𝑤 = =
|`|
∑ 𝛻𝑓y(𝑤)�
y

𝐶n = 𝐷 ×𝐶	



Stochastic gradient descent 

vApproximate the true gradient by a 
gradient at a single example at a time
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		𝑓 𝑤 = 	 =
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�𝐰�𝐱�)�

y

											= 	 𝟏
|𝑫|
	∑ (	=

>
𝒘8𝒘 + 𝐶′max(0,	 1 −	y�𝐰�𝐱�)�

y )
≡ 		 𝑓y 𝑤

𝛻𝑓 𝑤 = =
|`|
∑ 𝛻𝑓y(𝑤)�
y = 𝐸y~`𝛻𝑓y(𝑤)

Repeat	until	converge:
Randomly	pick	one	sample	(𝑥y, 𝑦y)
Update	w ← w− 𝜂𝛻f�(w)



Stochastic Sub-gradient Descent
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1.
2.
3.
4.
5.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

Update 𝑤 ←𝑤−𝜂	𝛻	𝑓(𝑤)
Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

𝑓 𝑤 ≡	 =
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱�))�

y



Stochastic (sub)-gradient descent for SVM
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1.
2.
3.
4.
5.
6.
7.
8.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

if 𝑦 𝒘H𝒙 < 𝟏
								𝒘 ← 1−𝜂 𝒘+𝜂	𝐶	𝑦𝒙
else

𝒘← 1−𝜂 𝒘
Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }



The Perceptron Algorithm [Rosenblatt 1958]

Prediction:  𝑦?@A? ← sg𝑛(𝒘H𝒙?@A?)
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1.
2.
3.
4.
5.
6.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

if 𝑦 𝒘H𝒙 < 𝟎
								𝒘 ←𝒘+𝜂𝑦𝒙

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }



The Perceptron Algorithm [Rosenblatt 1958]

Prediction:  𝑦?@A? ← sg𝑛(𝒘H𝒙?@A?)
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1.
2.
3.
4.
5.
6.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

if 𝑦 𝒘H𝒙 < 𝟎
								𝒘 ←𝒘+𝜂𝑦𝒙

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

Perceptron	effectively	minimizing:

�max(0,	 1 −	y�(𝐰�𝐱�))
�

y



A General Formula

𝑦° = argmax𝒚∈𝒴 𝑓(𝒚;𝒘, 𝒙)

v Inference/Test: given 𝒘, 𝒙, solve argmax
v Learning/Training: find a good 𝒘
vToday: 𝒙 ∈ ℝ𝒏,𝒴 = {−1,1} (binary classification)
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input

output space

model parameters 



Binary Linear Classifiers

𝑦° = argmax𝒚∈𝒴 𝑓(𝒚;𝒘, 𝒙)
v𝒙 ∈ ℝ𝒏,𝒴 = {−1,1}
v 𝑓 𝑦;𝒘, 𝒙 ≝ 𝑦 𝒘H𝒙 + 𝒃 = 𝑦 ∑ 𝑤y𝑥y�

y + 𝒃

v argmax𝒚∈𝒴 𝑓(𝒚;𝒘, 𝒙) = ¶			1, 𝒘
H𝒙 + 𝑏 ≥ 0

	−1,𝒘H𝒙 + 𝑏 < 0
= sgn 𝒘H𝒙 + 𝒃

(break ties arbitrarily)
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