
Lecture 2:
Binary Classification

Kai-Wei Chang
CS @ UCLA

kw@kwchang.net

Couse webpage: https://uclanlp.github.io/CS269-17/

1ML in NLP

Announcements

v Waiting list: If you’re not enrolled, please sign up.

v We will use Piazza as an online discussion
platform. Please sign up here:
piazza.com/ucla/fall2017/cs269

ML in NLP 2

This Lecture

vSupervised Learning
v Linear Classifiers

vPerceptron Algorithm
vSupport Vector Machine
vLogistic Regression

vOptimization in machine learning

CS6501 Lecture 2 3

The Badges game

v Conference attendees to the ICML 1994 were
given name badges labeled with + or −.

v What function was used to assign these labels?

+	Naoki	Abe - Eric	Baum

4CS6501 Lecture 2

Training data

+	Naoki	Abe
- Myriam Abramson
+	David	W.	Aha
+	Kamal	M.	Ali
- Eric	Allender
+	Dana	Angluin
- Chidanand Apte
+	Minoru	Asada
+	Lars	Asker
+	Javed Aslam
+	Jose	L.	Balcazar
- Cristina	Baroglio

+	Peter	Bartlett
- Eric	Baum
+	Welton Becket
- Shai Ben-David
+	George	Berg
+	Neil	Berkman
+	Malini Bhandaru
+	Bir Bhanu
+	Reinhard Blasig
- Avrim Blum
- Anselm	Blumer
+	Justin	Boyan

+	Carla	E.	Brodley
+	Nader	Bshouty
- Wray	Buntine
- Andrey Burago
+	Tom	Bylander
+	Bill	Byrne
- Claire	Cardie
+	John	Case
+	Jason	Catlett
- Philip	Chan
- Zhixiang Chen
- Chris	Darken

5CS6501 Lecture 2

Raw test data

Gerald	F.	DeJong
Chris	Drummond
Yolanda	Gil
Attilio Giordana
Jiarong Hong
J.	R.	Quinlan

Priscilla	Rasmussen
Dan	Roth
Yoram Singer
Lyle	H.	Ungar

6CS6501 Lecture 2

Why we need machine learning?

vThere is no (or limited numbers of) human
expert for some problems
vE.g.: Identify DNA binding sites, predicting disease

progression, predicting protein folding structure

CS6501 Lecture 2 7

Why we need machine learning?

vThere is no (or limited numbers of) human
expert for some problems

vHumans can perform a task, but can’t
describe how they do it
vE.g.: Object recognition

CS6501 Lecture 2 8

Why we need machine learning?

vThere is no (or limited numbers of) human
expert for some problems

vHumans can perform a task, but can’t
describe how they do it

vThe desired function is hard to be written
down in a closed form
vE.g.,: predict stock price

CS6501 Lecture 2 9

Output

y∈Y

An	item	y
drawn	from	a	label	

space	Y

Input

x∈X

An	item	x
drawn	from	an	
instance	space	X

Learned	Model
y	=	𝑓 𝑥

Supervised learning

10

Target	function
y	=	𝑓∗(x)

CS6501 Lecture 2

Input

x∈X

An	item	x
drawn	from	an	
instance	space	X

Supervised learning

11

x	is	represented	in	a	feature	space
- Typically	𝑥 ∈ 0,1 (or	𝑅*
- Usually	represented	as	a	vector
- We	call	it	input	vector

CS6501 Lecture 2

Output

y∈Y

An	item	y
drawn	from	a	label	

space	Y

Supervised learning

12

y	is	represented	in	output	space	
(label	space)
Different	kinds	of	output:

• Binary	classification:	
𝑦	 ∈ {-1,1}	

• Multiclass	classification:
𝑦 ∈ {1,2,3, …𝐾}

• Regression:
𝑦 ∈ 𝑅

• Structured	output
𝑦 ∈ 1,2,3, …𝐾 *

CS6501 Lecture 2

Output

y∈Y

An	item	y
drawn	from	a	label	

space	Y

Input

x∈X

An	item	x
drawn	from	an	
instance	space	X

Learned	Model
y	=	𝑓 𝑥

Learning the mapping

13

Target	function
y	=	𝑓∗(x)

CS6501 Lecture 2

Goal

vFind a good approximation of 𝑓∗ ⋅
vGood in what sense?

CS6501 Lecture 2 14

Under-fitting and over-fitting

vWhich classifier (blue line) is the best one?

CS6501 Lecture 2 15

Bias V.S. Variance

v Remember, training data are subsamples drawn from
the true distribution

v Exam strategy:
v Study every chapter well

v A+: Low var & bias
v Study only a few chapters

v A+? B? C? Low bias; High var
v Study every chapter roughly

v B+: Low var; high bias
v Go to sleep

v B ~D: High var, high bias

CS6501 Lecture 2 16

Questions of interest

v Representation
v How to represent x, y (and latent factors)

v Modeling
v What assumptions we made
v i.e., what is the hypothesis set of 𝑓	?

v Algorithms
v (learn) Give data, how to learn 𝑓?
v (inference) Give test instance x and 𝑓, how to

evaluate 𝑓(x)?
v Learning protocols

v What is the goal of the learning algorithm?

CS6501 Lecture 2 17

Different learning protocols
(more technical terms)

vSupervision signals?
vSupervised learning, semi-supervised learning,

unsupervised learning, bandit feedback

vWhat to be optimized?
vBatch learning: minimize the risk

(expected average loss)
vOnline learning:

Receive one sample and make prediction
Receive the label; then update
minimize the accumulated loss

CS6501 Lecture 2 18

Linear classification

CS6501 Lecture 2 19

Linear classifiers

vFor now, we consider binary classification
vGiven a training set 𝒟 = { 𝒙, 𝑦 }, find a

linear threshold units classify an example 𝑥
using the classification rule:

CS6501 Lecture 2 20

12

6

345

7

6w

1w
å

T y

1x

6x

The geometry interpretation

CS6501 Lecture 2 21

A simple trick to remove the bias term b

					𝑤8𝑥 + 𝑏

= 𝑤8	𝑏 ⋅ 	 𝑥1
= 𝑤; ⋅ 𝑥<

𝑤; = 𝑤8	𝑏 8

𝑥< =		 𝑥8		1 8			
For simplicity, I’ll write 𝑤; and 𝑥< as 𝑤 and 𝑥
when there is no confusion

CS6501 Lecture 2 22

Some data are not linearly separable

CS6501 Lecture 2 23

But they can be made liner

CS6501 Lecture 2 24

Using	a	different	representation
e.g.,	feature	conjunctions,	

non-linear	mapping

Exercise: can you make these data
points linearly separable?

CS6501 Lecture 2 25

Exercise: can you make these data
points linearly separable?

CS6501 Lecture 2 26

Adding	feature	𝑥=	𝑥>

Linear classifiers

v Let’s take a look at a few linear classifiers
vWe will show later, they can be written in

the same framework!

vPerceptron
v (Linear) Support Vector Machines
v Logistic Regression

CS6501 Lecture 2 27

The Perceptron Algorithm [Rosenblatt 1958]

vGoal: find a separating hyperplane
vCan be used in an online setting:

considers one example at a time
vConverges if data is separable

-- mistake bound

CS6501 Lecture 2 28

The Perceptron Algorithm [Rosenblatt 1958]

Prediction: 𝑦?@A? ← sg𝑛(𝒘H𝒙?@A?)

CS6501 Lecture 2 29

1.
2.
3.
4.
5.
6.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙, 𝑦) in 𝒟:

�̂� = sg𝑛(𝒘H𝒙) (predict)
if �̂� ≠ 𝑦, 𝒘←𝒘+𝜂𝑦𝒙 (update)

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

Learning rate

The Perceptron Algorithm [Rosenblatt 1958]

Prediction: 𝑦?@A? ← sg𝑛(𝒘H𝒙?@A?)

CS6501 Lecture 2 30

1.
2.
3.
4.
5.
6.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

if 𝑦 𝒘H𝒙 < 𝟎
								𝒘 ←𝒘+𝜂𝑦𝒙

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

Geometry Interpretation

31

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

wx =	0
Current	
decision	
boundary w

Current	
weight	vector

x	(with	y	=	+1)
next	item	to	be	

classified
x	as	a	vector

x	as	a	vector	
added	to	w

wx =	0
New

decision	
boundary

w	
New weight	

vector

(Figures	from	Bishop	2006)
Positive
Negative

CS6501 Lecture 2

Weight	vector	points	to	the	positive side

Perceptron in action

32

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

wx =	0
Current	
decision	
boundary

w
Current	weight	

vector

x	(with	y	=	+1)
next	item	to	be	

classified x	as	a	vector

x	as	a	vector	added	
to	w

wx =	0
New

decision	
boundary

w	
New weight	

vector

(Figures	from	Bishop	2006)
Positive
Negative

CS6501 Lecture 2

Convergence of Perceptron

vMistake bound
v If data is linearly separable (i.e., a good linear

model exists), the perceptron will converge
after a fixed number of mistakes [Novikoff 1962]

CS6501 Lecture 2 33

Marginal Perceptron -- Motivation

vWhich separating hyper-plane is better?

CS6501 Lecture 2 34

Smaller	(

The Perceptron Algorithm [Rosenblatt 1958]

Prediction: 𝑦?@A? ← sg𝑛(𝒘H𝒙?@A?)

CS6501 Lecture 2 35

1.
2.
3.
4.
5.
6.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

if 𝑦 𝒘H𝒙 < 𝟎
								𝒘 ←𝒘+𝜂𝑦𝒙

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

The Perceptron Algorithm [Rosenblatt 1958]

Prediction: 𝑦?@A? ← sg𝑛(𝒘H𝒙?@A?)

CS6501 Lecture 2 36

1.
2.
3.
4.
5.
6.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

if 𝑦 𝒘H𝒙 < 𝛿
								𝒘 ←𝒘+𝜂𝑦𝒙

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

How about batch setting?

v Learning as loss minimization
1. Collect training data			𝐷S = { 𝒙, 𝑦 }
2. Pick a hypothesis class
v E.g., linear classifiers, deep neural networks

3. Choose a loss function
v Hinge loss, negative log-likelihood
v We can impose a preference (i.e., prior) over

hypotheses, e.g., simpler is better
4. Minimize the expected loss
v SGD, coordinate descent, Newton methods, LBFGS

CS6501 Lecture 2 37

Batch learning setup

v 𝐷S = { 𝒙, 𝑦 } drawn from a fixed, unknown
distribution 𝒟	

v A hidden oracle classifier 𝑓∗, 𝑦 = 𝑓∗(𝑥)
v We wish to find a hypothesis 𝑓 ∈ 𝐻 that mimics 𝑓∗

v We define a loss function 𝐿(𝑓 𝑥 , 𝑓∗ 𝑥) that
penalizes mistakes

v What is the ideal 𝑓?
argmin

[∈\
𝐸^~`	 𝐿 𝑓 𝑥 , 𝑓∗ 𝑥

expected loss

CS6501 Lecture 2 38

Batch learning setup

v 𝐷S = { 𝒙, 𝑦 } drawn from a fixed, unknown distribution 𝒟	
v A hidden oracle classifier 𝑓∗, 𝑦 = 𝑓∗(𝑥)
v We wish to find a hypothesis 𝑓 ∈ 𝐻 that mimics 𝑓∗

v We define a loss function 𝐿(𝑓 𝑥 , 𝑓∗ 𝑥) that penalizes
mistakes

v What is the ideal 𝑓?

min
[∈\

𝐸^~`	 𝐿ab= 𝑓 𝑥 , 𝑓∗ 𝑥 = 	min
[∈\

	𝐸^~`[#𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑠]	

CS6501 Lecture 2 39

Let’s	define	
𝐿mb= 𝑦, 𝑦n = 1		𝑖𝑓	𝑦 ≠ 𝑦’
																											0		𝑖𝑓	𝑦 = 𝑦’

How can we learn f from 𝐷S

v We don’t know 𝐷, we only see samples in 𝐷S

v Instead, we minimize empirical loss

CS6501 Lecture 2 40

min
[∈\

1
𝐷S
∑ ^,p ∈S̀ 𝐿 𝑓 𝑥 , 𝑦

How can we prevent over-fitting?

v With sufficient data, 𝐷S ≈ D
v However, if data is insufficient ⇒ overfitting
v We can impose a preference over models

v We will discuss the choices of 	𝑅 𝑓 later

CS6501 Lecture 2 41

min
[∈\

	𝑅 𝑓 		+		
1
𝐷S
∑ ^,p ∈S̀ 𝐿 𝑓 𝑥 , 𝑦

How about the loss function?

vUsually, we cannot minimize 0-1 loss
v It is a combinatorial optimization problem: NP-hard

v Idea: minimizing its upper-bound

CS6501 Lecture 2 42

𝑦	𝑓(𝑥)

𝐿(
𝑦,
𝑓
𝑥
)

How about the loss function?

vUsually, we cannot minimize 0-1 loss
v It is a combinatorial optimization problem: NP-hard

v Idea: minimizing its upper-bound

CS6501 Lecture 2 43

𝑦	𝑓(𝑥)

𝐿(
𝑦,
𝑓
𝑥
)

Many choices

v We are minimizing with R, L, H with your choice

v Let consider H is a set of d-dimensional linear function

v H can be parameterized as
𝑓 𝑥 : 	𝑤8𝑥 ≥ 0 ,𝑤 ∈ 𝑅u

CS6501 Lecture 2 44

min
[∈\

	𝑅 𝑓 		+		
1
𝐷S
∑ ^,p ∈S̀ 𝐿 𝑓 𝑥 , 𝑦

Back to Linear model

v We are minimizing with R, L, H with your choice

v Let decide H to be a set of d-dimensional linear
function

v H can be parameterized as
𝑓 𝑥 : 	𝑤8𝑥 ≥ 0 ,𝑤 ∈ 𝑅u

v We are going to fine the best one based on 𝐷S
v i.e., find the best setting of w and b

CS6501 Lecture 2 45

min
[∈\

	𝑅 𝑓 		+		
1
𝐷S
∑ ^,p ∈S̀ 𝐿 𝑓 𝑥 , 𝑦

Rewrite our optimization problem

v Minimizing the empirical loss:

v Minimizing the empirical loss with linear function

v What choices of R and L we have?

CS6501 Lecture 2 46

min
v∈wx

	𝑅 𝑤 		+		
1
𝐷S
∑ ^,p ∈S̀ 𝐿 𝑥, 𝑤, 𝑦

min
[∈\

	𝑅 𝑓 		+		
1
𝐷S
∑ ^,p ∈S̀ 𝐿 𝑓 𝑥 , 𝑦

Many choices of loss function (L)

CS6501 Lecture 2 47

CS6501 Lecture 2 48

Many choices of R(w)

vMinimizing the empirical loss with linear
function

vPrefer simpler model: (how?)
v Sparse:
𝑅 𝑤 = #non-zero elements in w (L0 regularizer)
𝑅 𝑤 = ∑ 𝑤y�

y (L1 regularizer)
v Gaussian prior (large margin w/ hinge loss):
𝑅 𝑤 = ∑ 𝑤y>�

y = 𝑤8𝑤 (L2 regularizer)

CS6501 Lecture 2 49

min
v∈wx

	𝑅 𝑤 		+		
1
𝐷S
∑ ^,p ∈S̀ 𝐿 𝑥, 𝑤, 𝑦

Support Vector Machines

CS6501 Lecture 2 50

CMU	ML	protest

Support Vector Machines (SVMs)

vR(w): l2-loss, 𝐿 𝑤, 𝑥, 𝑦 : hinge loss

vMaximizing margin (why?!!)

CS6501 Lecture 2 51

min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱�))�

y

The hinge loss

CS6501 Lecture 2 52

CS6501 Lecture 2 53

Let’s view it from another direction

v SVM learns a model 𝒘 on 𝒟 = { 𝒙𝒊, 𝑦y } by
solving:
min
𝒘,�

			=
>
𝒘8𝒘

s.t 				y�(𝐰�𝐱� + 𝑏) ≥ 1, ∀ 𝒙y, 𝑦y ∈ 𝒟

CS6501 Lecture 2 54

(Hard	SVM)

Why	the	margin	is	 >
||v	||

?

argmax >
||v	||

= arg 	min	 ||𝑤	||
= arg 	min	 ||𝑤	||>
		= arg 	min	 		𝑤8𝑤

Soft SVMs

v Data is not separable ⇒ hard SVM fails
Why?

v Introduce a set of slack variable {𝜉y}
⇒ relax the constraints

v Given	𝒟 = 𝒙𝒊, 𝑦y , soft SVM solves:
min
𝒘,�,𝝃

			=
>
𝒘8𝒘 + 𝐶 ∑ 𝜉y�

y

s. t			y�(𝐰�𝐱� + 𝑏) ≥ 1 − 𝜉y;	𝜉y ≥ 0						∀𝑖	

CS6501 Lecture 2 55

(Soft	SVM)

penalty	parameter

An alternative formulation

min
𝒘,�,𝝃

			=
>
𝒘8𝒘 + 𝐶 ∑ 𝜉y�

y

s. t			y�(𝐰�𝐱� + 𝑏) ≥ 1 − 𝜉y;	𝜉y ≥ 0						∀𝑖	
vRewrite the constraints:

𝜉y ≥ 1 −	y�(𝐰�𝐱� + 𝑏);	𝜉y ≥ 0 ∀𝑖	
v In the optimum, 𝜉y = max(0,	 1 −	y�(𝐰�𝐱� + 𝑏))

vSoft SVM can be rewritten as:
min
𝒘,�

			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱� + 𝑏))�

y

CS6501 Lecture 2 56

Empirical	lossRegularization		term

An alternative formulation

min
𝒘,�,𝝃

			=
>
𝒘8𝒘 + 𝐶 ∑ 𝜉y�

y

s. t			y�(𝐰�𝐱� + 𝑏) ≥ 1 − 𝜉y;	𝜉y ≥ 0						∀𝑖	
vRewrite the constraints:

𝜉y ≥ 1 −	y�(𝐰�𝐱� + 𝑏);	𝜉y ≥ 0 ∀𝑖	
v In the optimum, 𝜉y = max(0,	 1 −	y�(𝐰�𝐱� + 𝑏))

vSoft SVM can be rewritten as:
min
𝒘,�

			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱� + 𝑏))�

y

CS6501 Lecture 2 57

Empirical	lossRegularization		term

We	can	simply	”b”	using	the	trick
However,	we	will	add	b	into	the	regularization	term
It	is	often	okay,	if	we	have	many	features	

Balance between regularization and
empirical loss

58 CS6501 Lecture 2

Balance between regularization and
empirical loss

59

(DEMO)

CS6501 Lecture 2

Regularized loss minimization
v L1-Loss SVM

						min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱�))�

y

v L2-Loss SVM
	min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,1 −	y�(𝐰�𝐱�))>�

y

v Logistic Regression (regularized)

					min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ log(1 + 𝑒b��(𝐰�𝐱�))�

y

v Loss over training data + regularizer

60CS6501 Lecture 2

Loss Functions

CS6501 Lecture 2 61

Logistic Regression

Regression Logistic regression

CS6501 Lecture 2 62

Logistic	function

logistic function / sigmoid function

vWhen 𝑧 → ∞ what is 𝜎 𝑧 ?
vWhen 𝑧 → −∞ what is 𝜎 𝑧 ?
vWhen 𝑧 = 0 what is 𝜎 𝑧 ?

CS6501 Lecture 2 63

Why sigmoid?

CS6501 Lecture 2 64

Probabilistic Interpretation

min
𝒘
			
1
2𝒘

8𝒘 + 𝐶�log(1 + 𝑒b��(𝐰�𝐱�))
�

y

Assume labels are generated using the following
probability distribution:

CS6501 Lecture 2 65

CS6501 Lecture 2 66

How	to	make	prediction?
Predict	y=1	if	P(y=1|x,w)	>	p	(y=	-1|x,	w)

Decision boundary?

vThe decision boundary?

CS6501 Lecture 2 67

Alternative view

v Predict y=1 if P(y=1|x,w) > P(y= -1|x, w)

v When does this happen?

v
=

=�@��	(bv�^)
> 0.5

⇒ 1 + exp −𝑤8𝑥 < 2
⇒ exp −𝑤8𝑥 < 1
⇒ 𝑤8𝑥 > 0

CS6501 Lecture 2 68

Maximum likelihood estimation

vProbabilistic model assumption:

v The log-likelihood of seeing a dataset
D = {(x , y)} if the true weight vector was w:

CS6501 Lecture 2 69

𝑃 𝐷 𝑤 = Πy	𝑃 𝑦y 𝑥y, 𝑤
⇒ log𝑃 𝐷 𝑤 = ∑y log 𝑃 𝑦y 𝑥y, 𝑤 	

Minimizing negative log-likelihood

v Log likelihood

v Logistic regression

v Let’s add some prior
vSimpler is better ⇒ add Gaussian Prior

CS6501 Lecture 2 70

min
𝒘,�

			∑ log(1 + 𝑒b��(𝐰�𝐱�))�
y

Add Gaussian Prior

v Simpler is better ⇒ add Gaussian Prior
v Suppose each element in w is drawn

independently from the normal distribution
centered at zero with variance 𝜎>

v Bias towards smaller weights

CS6501 Lecture 2 71

Regularized Logistic regression

v Remember we are in the log space

v Put them together
v 𝑃 𝑤 𝐷 	∝ 𝑃 𝑤,𝐷 = 𝑃 𝐷	 𝑤 𝑃(𝑤)
v Learning:

Find weight vector by maximizing the posterior
distribution P(w | D)

CS6501 Lecture 2 72

Maximum a posteriori estimation

v Put them together
v 𝑃 𝑤 𝐷 	∝ 𝑃 𝑤,𝐷 = 𝑃 𝐷	 𝑤 𝑃(𝑤)

v Learning: Find weight vector by maximizing the
posterior distribution P(w | D)

CS6501 Lecture 2 73

Log-likelihoodprior

	min
𝒘
			
1
2𝒘

8𝒘 + 𝐶�log(1 + 𝑒b��(𝐰�𝐱�))
�

y

Regularized loss minimization
v L1-Loss SVM

						min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱�))�

y

v L2-Loss SVM
	min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,1 −	y�(𝐰�𝐱�))>�

y

v Logistic Regression (regularized)

					min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ log(1 + 𝑒b��(𝐰�𝐱�))�

y

v Loss over training data + regularizer

74CS6501 Lecture 2

How to learn
(how to optimize the objective function?)

min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱�))�

y

v This function is convex
v Many convex optimization methods can be used

vStochastic (sub)-gradient descent
vCoordinate descent methods
vNewton methods
vLBFGS

CS6501 Lecture 2 75

Convexity

CS6501 Lecture 2 76

Non convex minimization is hard

vYou may end up with some local minimum

CS6501 Lecture 2 77

Convex optimization is relatively easy

vEnsure that there are no local minima
vNote: need special design for functions that

are not differentiable (e.g., hinge loss)

CS6501 Lecture 2 78

Different optimization techniques

CS6501 Lecture 2 79

Results	from	http://www.cs.virginia.edu/~kc2wc/papers/ChangHsLi08.pdf

Some	methods	(e.g.,	SGD,	CD)	
are	fast	in	the	early	stage	of	
optimization

Some	methods	(e.g.,	Newton	
methods)	converge	faster

Gradient descent

CS6501 Lecture 2 80

Why not gradient descent?

vFor some functions, gradient may not exist

vSolution: use sub-gradient

CS6501 Lecture 2 81

min
𝒘
			=
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱�))�

y

𝛻𝑓y 𝑤 ≡ § 𝑤																					𝑖𝑓	y�(𝐰�𝐱�) > 1
𝑤 − 𝐶′𝑦y𝑥y			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																			

,	

	

		𝑓 𝑤 = 	 =
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�𝐰�𝐱�)�

y

											= 	 𝟏
|𝑫|
	∑ (=

>
𝒘8𝒘 + 𝐶′max(0,	 1 −	y�𝐰�𝐱�)�

y)

≡ 𝟏
𝑫
∑ 𝑓y 𝑤�
y

𝛻𝑓 𝑤 = =
|`|
∑ 𝛻𝑓y(𝑤)�
y

𝐶n = 𝐷 ×𝐶	

Stochastic gradient descent

vApproximate the true gradient by a
gradient at a single example at a time

CS6501 Lecture 2 82

		𝑓 𝑤 = 	 =
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�𝐰�𝐱�)�

y

											= 	 𝟏
|𝑫|
	∑ (=

>
𝒘8𝒘 + 𝐶′max(0,	 1 −	y�𝐰�𝐱�)�

y)
≡ 		 𝑓y 𝑤

𝛻𝑓 𝑤 = =
|`|
∑ 𝛻𝑓y(𝑤)�
y = 𝐸y~`𝛻𝑓y(𝑤)

Repeat	until	converge:
Randomly	pick	one	sample	(𝑥y, 𝑦y)
Update	w ← w− 𝜂𝛻f�(w)

Stochastic Sub-gradient Descent

CS6501 Lecture 2 83

1.
2.
3.
4.
5.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

Update 𝑤 ←𝑤−𝜂	𝛻	𝑓(𝑤)
Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

𝑓 𝑤 ≡	 =
>
𝒘8𝒘 + 𝐶 ∑ max(0,	 1 −	y�(𝐰�𝐱�))�

y

Stochastic (sub)-gradient descent for SVM

CS6501 Lecture 2 84

1.
2.
3.
4.
5.
6.
7.
8.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

if 𝑦 𝒘H𝒙 < 𝟏
								𝒘 ← 1−𝜂 𝒘+𝜂	𝐶	𝑦𝒙
else

𝒘← 1−𝜂 𝒘
Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

The Perceptron Algorithm [Rosenblatt 1958]

Prediction: 𝑦?@A? ← sg𝑛(𝒘H𝒙?@A?)

CS6501 Lecture 2 85

1.
2.
3.
4.
5.
6.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

if 𝑦 𝒘H𝒙 < 𝟎
								𝒘 ←𝒘+𝜂𝑦𝒙

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

The Perceptron Algorithm [Rosenblatt 1958]

Prediction: 𝑦?@A? ← sg𝑛(𝒘H𝒙?@A?)

CS6501 Lecture 2 86

1.
2.
3.
4.
5.
6.

Initialize𝒘 ← 𝟎 ∈ ℝ(

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

if 𝑦 𝒘H𝒙 < 𝟎
								𝒘 ←𝒘+𝜂𝑦𝒙

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

Perceptron	effectively	minimizing:

�max(0,	 1 −	y�(𝐰�𝐱�))
�

y

A General Formula

𝑦° = argmax𝒚∈𝒴 𝑓(𝒚;𝒘, 𝒙)

v Inference/Test: given 𝒘, 𝒙, solve argmax
v Learning/Training: find a good 𝒘
vToday: 𝒙 ∈ ℝ𝒏,𝒴 = {−1,1} (binary classification)

CS6501 Lecture 2 87

input

output space

model parameters

Binary Linear Classifiers

𝑦° = argmax𝒚∈𝒴 𝑓(𝒚;𝒘, 𝒙)
v𝒙 ∈ ℝ𝒏,𝒴 = {−1,1}
v 𝑓 𝑦;𝒘, 𝒙 ≝ 𝑦 𝒘H𝒙 + 𝒃 = 𝑦 ∑ 𝑤y𝑥y�

y + 𝒃

v argmax𝒚∈𝒴 𝑓(𝒚;𝒘, 𝒙) = ¶			1, 𝒘
H𝒙 + 𝑏 ≥ 0

	−1,𝒘H𝒙 + 𝑏 < 0
= sgn 𝒘H𝒙 + 𝒃

(break ties arbitrarily)

CS6501 Lecture 2 88

