Lecture 2: Binary Classification

Kai-Wei Chang CS @ UCLA <u>kw@kwchang.net</u>

Couse webpage: https://uclanlp.github.io/CS269-17/

ML in NLP

Announcements

Waiting list: If you're not enrolled, please sign up.

We will use Piazza as an online discussion platform. Please sign up here: piazza.com/ucla/fall2017/cs269

This Lecture

- Supervised Learning
- Linear Classifiers
 - Perceptron Algorithm
 - Support Vector Machine
 - Logistic Regression
- Optimization in machine learning

+ Naoki Abe

- Eric Baum

- Conference attendees to the ICML 1994 were given name badges labeled with + or -.
- What function was used to assign these labels?

Training data

- + Naoki Abe
- Myriam Abramson
- + David W. Aha
- + Kamal M. Ali
- Eric Allender
- + Dana Angluin
- Chidanand Apte
- + Minoru Asada
- + Lars Asker
- + Javed Aslam
- + Jose L. Balcazar
- Cristina Baroglio

- + Peter Bartlett
- Eric Baum
- + Welton Becket
- Shai Ben-David
- + George Berg
- + Neil Berkman
- + Malini Bhandaru
- + Bir Bhanu
- + Reinhard Blasig
- Avrim Blum
- Anselm Blumer
- + Justin Boyan

- + Carla E. Brodley
- + Nader Bshouty
- Wray Buntine
- Andrey Burago
- + Tom Bylander + Bill Byrne
- Claire Cardie
- + John Case
- + Jason Catlett
- Philip Chan
- Zhixiang Chen
- Chris Darken

Raw test data

Gerald F. DeJong Chris Drummond Yolanda Gil Attilio Giordana Jiarong Hong J. R. Quinlan Priscilla Rasmussen Dan Roth Yoram Singer Lyle H. Ungar

Why we need machine learning?

There is no (or limited numbers of) human expert for some problems

E.g.: Identify DNA binding sites, predicting disease progression, predicting protein folding structure

Why we need machine learning?

There is no (or limited numbers of) human expert for some problems

- Humans can perform a task, but can't describe how they do it
 - E.g.: Object recognition

Why we need machine learning?

- There is no (or limited numbers of) human expert for some problems
- Humans can perform a task, but can't describe how they do it
- The desired function is hard to be written
 - down in a closed form
 - E.g.,: predict stock price

Supervised learning

Computer Science

Supervised learning

Input

 $\mathsf{x} \in \mathcal{X}$

An item **x** drawn from an instance space X

x is represented in a feature space

- Typically $x \in \{0,1\}^n$ or \mathbb{R}^N
- Usually represented as a vector
- We call it input vector

Supervised learning

y is represented in output space (label space) Different kinds of output:

- Binary classification: $y \in \{-1,1\}$
- Multiclass classification: $y \in \{1,2,3, ..., K\}$
- Regression:

 $y \in R$

• Structured output $y \in \{1,2,3, \dots K\}^N$

Learning the mapping

Computer Science

• Find a good approximation of $f^*(\cdot)$

Good in what sense?

Under-fitting and over-fitting

Which classifier (blue line) is the best one?

Bias V.S. Variance

- Remember, training data are subsamples drawn from the true distribution
- Exam strategy:
 - Study every chapter well
 - A+: Low var & bias
 - Study only a few chapters
 - ✤ A+? B? C? Low bias; High var
 - Study every chapter roughly
 - B+: Low var; high bias
 - Go to sleep
 - B ~D: High var, high bias

Questions of interest

- Representation
 - How to represent x, y (and latent factors)
- Modeling
 - What assumptions we made
 - \diamond i.e., what is the hypothesis set of f?
- Algorithms
 - (earn) Give data, how to learn f?
 - (inference) Give test instance x and f, how to evaluate f(x)?
- Learning protocols
 - What is the goal of the learning algorithm?

Different learning protocols (more technical terms)

- Supervision signals?
 - Supervised learning, semi-supervised learning, unsupervised learning, bandit feedback
- What to be optimized?
 - Batch learning: minimize the risk (expected average loss)
 - Online learning:

Receive one sample and make prediction Receive the label; then update minimize the accumulated loss

Linear classification

Computer Science

19

Linear classifiers

For now, we consider binary classification

Siven a training set $\mathcal{D} = \{(x, y)\}$, find a linear threshold units classify an example x using the classification rule:

 $\operatorname{sgn}(b + \boldsymbol{w}^T \boldsymbol{x}) = \operatorname{sgn}(b + \sum_i w_i x_i)$

•
$$b + w^T x \ge 0 \Rightarrow$$
 Predict y = 1

•
$$b + w^T x < 0 \Rightarrow$$
 Predict y = -1

CS6501 Lecture 2

The geometry interpretation

A simple trick to remove the bias term b

$$w^{T}x + b$$
$$= [w^{T} b] \cdot \begin{bmatrix} x \\ 1 \end{bmatrix}$$
$$= \widetilde{w} \cdot \widetilde{x}$$

$$\widetilde{w} = [w^T \ b]^T$$
$$\widetilde{x} = [x^T \ 1]^T$$

For simplicity, I'll write \tilde{w} and \tilde{x} as w and x when there is no confusion

Some data are not linearly separable

But they can be **made** liner

Using a different representation e.g., feature conjunctions, non-linear mapping

Exercise: can you make these data points linearly separable?

Exercise: can you make these data points linearly separable?

Linear classifiers

Let's take a look at a few linear classifiers

We will show later, they can be written in the same framework!

Perceptron

- (Linear) Support Vector Machines
- Logistic Regression

- Goal: find a separating hyperplane
- Can be used in an online setting: considers one example at a time
- Converges if data is separable
 mistake bound

Given a training set $\mathcal{D} = \{(x, y)\}$ 1. Initialize $w \leftarrow 0 \in \mathbb{R}^n$ 2. For epoch $1 \dots T$: 3. For (x, y) in \mathcal{D} : 4. $\hat{y} = \operatorname{sgn}(w^T x)$ (predict) 5. $\operatorname{if} \hat{y} \neq y, \ w \leftarrow w + \eta y x$ (update) 6. Return w

Prediction:
$$y^{\text{test}} \leftarrow \text{sgn}(w^{\top}x^{\text{test}})$$

Given a training set $\mathcal{D} = \{(x, y)\}$

- 1. Initialize $w \leftarrow \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch $1 \dots T$:
- 3. For (x, y) in \mathcal{D} :
- 4. if $y(w^{T}x) < 0$
- 5. $w \leftarrow w + \eta y x$
- 6. Return w

Prediction:
$$y^{\text{test}} \leftarrow \text{sgn}(w^{\top}x^{\text{test}})$$

Geometry Interpretation

Weight vector points to the positive side

(Figures from Bishop 2006)

Computer Science

CS6501 Lecture 2

Convergence of Perceptron

Mistake bound

If data is linearly separable (i.e., a good linear model exists), the perceptron will converge after a fixed number of mistakes [Novikoff 1962]

Marginal Perceptron -- Motivation

Which separating hyper-plane is better?

CS6501 Lecture 2

Given a training set $\mathcal{D} = \{(x, y)\}$

- 1. Initialize $w \leftarrow \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch $1 \dots T$:
- 3. For (x, y) in \mathcal{D} :
- 4. if $y(w^{T}x) < 0$
- 5. $w \leftarrow w + \eta y x$
- 6. Return w

Prediction:
$$y^{\text{test}} \leftarrow \text{sgn}(w^{\top}x^{\text{test}})$$

Given a training set $\mathcal{D} = \{(x, y)\}$ 1. Initialize $w \leftarrow \mathbf{0} \in \mathbb{R}^n$ 2. For epoch 1...*T*: 3. For (x, y) in \mathcal{D} : 4. if $y(w^T x) < \delta$ 5. $w \leftarrow w + \eta y x$ 6. Return w

Prediction:
$$y^{\text{test}} \leftarrow \text{sgn}(w^{\top}x^{\text{test}})$$

How about batch setting?

- Learning as loss minimization
- 1. Collect training data $\widehat{D} = \{(x, y)\}$
- 2. Pick a hypothesis class
 - E.g., linear classifiers, deep neural networks
- 3. Choose a loss function
 - Hinge loss, negative log-likelihood
 - We can impose a preference (i.e., prior) over hypotheses, e.g., simpler is better
- 4. Minimize the expected loss
 - SGD, coordinate descent, Newton methods, LBFGS

Batch learning setup

- ✤ $\widehat{D} = \{(x, y)\}$ drawn from a fixed, unknown distribution \mathcal{D}
- A hidden oracle classifier f^* , $y = f^*(x)$
- ♦ We wish to find a hypothesis $f \in H$ that mimics f^*
- We define a loss function L(f(x), f*(x)) that penalizes mistakes
- What is the ideal f?

$$\arg\min_{f\in H} E_{x\sim D} \left[L(f(x), f^*(x)) \right]$$

expected loss

Batch learning setup

- ✤ $\widehat{D} = \{(x, y)\}$ drawn from a fixed, unknown distribution \mathcal{D}
- A hidden oracle classifier f^* , $y = f^*(x)$
- ♦ We wish to find a hypothesis $f \in H$ that mimics f^*
- We define a loss function L(f(x), f*(x)) that penalizes mistakes
- What is the ideal f?

Let's define

$$L_{o-1}(y, y') = 1$$
 if $y \neq y'$
0 if $y = y'$

$$\min_{f \in H} E_{x \sim D} \left[L_{0-1}(f(x), f^*(x)) \right] = \min_{f \in H} E_{x \sim D} \left[\# mistakes \right]$$

How can we learn f from \widehat{D}

• We don't know D, we only see samples in \widehat{D}

Instead, we minimize empirical loss

$$\min_{f \in H} \frac{1}{|\widehat{D}|} \sum_{(x,y) \in \widehat{D}} \left[L(f(x), y) \right]$$

How can we prevent over-fitting?

- With sufficient data, $\widehat{D} \approx D$
- ♦ However, if data is insufficient \Rightarrow overfitting
- We can impose a preference over models

$$\min_{f \in H} R(f) + \frac{1}{|\widehat{D}|} \sum_{(x,y) \in \widehat{D}} [L(f(x), y)]$$

• We will discuss the choices of R(f) later

How about the loss function?

Usually, we cannot minimize 0-1 loss

It is a combinatorial optimization problem: NP-hard

Idea: minimizing its upper-bound

How about the loss fu

Usually, we cannot minim

It is a combinatorial optimiz

Idea: minimizing its upper-bound

Many choices

♦ We are minimizing with R, L, H with your choice $\min_{f \in H} R(f) + \frac{1}{|\widehat{D}|} \sum_{(x,y) \in \widehat{D}} [L(f(x), y)]$

Let consider H is a set of d-dimensional linear function
 H can be parameterized as

 ${f(x): w^T x \ge 0}, w \in \mathbb{R}^d$

Back to Linear model

- ♦ We are minimizing with R, L, H with your choice $\min_{f \in H} R(f) + \frac{1}{|\widehat{D}|} \sum_{(x,y) \in \widehat{D}} [L(f(x), y)]$
- Let decide H to be a set of d-dimensional linear function
- ✤ H can be parameterized as ${f(x): w^T x \ge 0}, w \in \mathbb{R}^d$

We are going to fine the best one based on D
 i.e., find the best setting of w and b

Rewrite our optimization problem

Minimizing the empirical loss:

$$\min_{f \in H} R(f) + \frac{1}{|\widehat{D}|} \sum_{(x,y) \in \widehat{D}} [L(f(x),y)]$$

Minimizing the empirical loss with linear function

$$\min_{w \in \mathbb{R}^d} R(w) + \frac{1}{|\widehat{D}|} \sum_{(x,y) \in \widehat{D}} [L(x, w, y)]$$

What choices of R and L we have?

Many choices of loss function (L)

Many loss functions exist

- Perceptron loss $L_{Perceptron}(y, \mathbf{x}, \mathbf{w}) = \max(0, -y\mathbf{w}^T\mathbf{x})$
- Hinge loss (SVM) $L_{Hinge}(y, \mathbf{x}, \mathbf{w}) = \max(0, 1 y\mathbf{w}^T\mathbf{x})$
- Exponential loss (AdaBoost) $L_{Exponential}(y, \mathbf{x}, \mathbf{w}) = e^{-y\mathbf{w}^T\mathbf{x}}$
- Logistic loss (logistic regression) $L_{Logistic}(y, \mathbf{x}, \mathbf{w}) = \log(1 + e^{-y\mathbf{w}^T\mathbf{x}})$

Computer Science

⁴⁸

Many choices of R(w)

Minimizing the empirical loss with linear function

$$\min_{\boldsymbol{w}\in \boldsymbol{R}^{\boldsymbol{d}}} R(\boldsymbol{w}) + \frac{1}{|\widehat{D}|} \sum_{(x,y)\in \widehat{D}} [L(\boldsymbol{x},\boldsymbol{w},y)]$$

Prefer simpler model: (how?)

 ❖ Sparse: R(w) = #non-zero elements in w (L0 regularizer) R(w) = ∑_i|w_i| (L1 regularizer)
 ❖ Gaussian prior (large margin w/ hinge loss): R(w) = ∑_i w_i² = w^Tw (L2 regularizer)

Support Vector Machines

CMU ML protest

CS6501 Lecture 2

Support Vector Machines (SVMs)

$$\Re(\mathbf{w}): \text{ I2-loss, } L(w, x, y): \text{ hinge loss}$$
$$\min_{\mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_i \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i))$$

Maximizing margin (why?!!)

The hinge loss

Let's view it from another direction

SVM learns a model w on $\mathcal{D} = \{(x_i, y_i)\}$ by solving:

Soft SVMs

◆ Data is not separable ⇒ hard SVM fails Why?

Introduce a set of slack variable {ξ_i} ⇒ relax the constraints Given D = {(x_i, y_i)}, soft SVM solves: min ¹/₂ w^T w + C ∑_i ξ_i (Soft SVM) s.t y_i(w^Tx_i + b) ≥ 1 - ξ_i; ξ_i ≥ 0 ∀i

→ penalty parameter

An alternative formulation

$$\min_{w,b,\xi} \frac{1}{2} w^T w + C \sum_i \xi_i$$

s.t $y_i (w^T x_i + b) \ge 1 - \xi_i; \ \xi_i \ge 0 \quad \forall i$
* Rewrite the constraints:
 $\xi_i \ge 1 - y_i (w^T x_i + b); \ \xi_i \ge 0 \quad \forall i$
* In the optimum, $\xi_i = \max(0, 1 - y_i (w^T x_i + b))$
* Soft SVM can be rewritten as:
$$\min_{w,b} \frac{1}{2} w^T w + C \sum_i \max(0, 1 - y_i (w^T x_i + b)) + Regularization term + Empirical loss$$

Balance between regularization and empirical loss

(a) Training data and an over- (b) Testing data and an overfitting classifier fitting classifier

Balance between regularization and empirical loss

(c) Training data and a better (d) Testing data and a better classifier classifier

(DEMO)

CS6501 Lecture 2

Regularized loss minimization

L1-Loss SVM

$$\min_{w} \frac{1}{2} w^{T} w + C \sum_{i} \max(0, 1 - y_{i}(w^{T} x_{i}))$$

$$* L2-Loss SVM$$

$$\min_{w} \frac{1}{2} w^{T} w + C \sum_{i} \max(0, 1 - y_{i}(w^{T} x_{i}))^{2}$$

*** Logistic Regression (regularized)**

$$\min_{w} \frac{1}{2} w^{T} w + C \sum_{i} \log(1 + e^{-y_{i}(w^{T} x_{i})})$$

*** Loss over training data + regularizer**

Loss Functions

CS6501 Lecture 2

Logistic Regression

Regression

Logistic regression

CS6501 Lecture 2

logistic function / sigmoid function

- When $z \to -\infty$ what is $\sigma(z)$?
- When z = 0 what is $\sigma(z)$?

Why sigmoid?

CS6501 Lecture 2

Probabilistic Interpretation

$$\min_{\boldsymbol{w}} \quad \frac{1}{2}\boldsymbol{w}^{T}\boldsymbol{w} + C\sum_{i} \log(1 + e^{-y_{i}(\boldsymbol{w}^{T}\boldsymbol{x}_{i})})$$

Assume labels are generated using the following probability distribution:

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = \frac{e^{\mathbf{w}^T \mathbf{x}}}{1 + e^{\mathbf{w}^T \mathbf{x}}} = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$
$$P(y = -1 | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{\mathbf{w}^T \mathbf{x}}}$$

CS6501 Lecture 2

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = \frac{e^{\mathbf{w}^T \mathbf{x}}}{1 + e^{\mathbf{w}^T \mathbf{x}}} = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$
$$P(y = -1 | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{\mathbf{w}^T \mathbf{x}}}$$
$$P(y | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-y\mathbf{w}^T\mathbf{x})}$$

How to make prediction?

Predict y=1 if P(y=1|x,w) > p(y=-1|x,w)

Decision boundary?

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = \frac{e^{\mathbf{w}^T \mathbf{x}}}{1 + e^{\mathbf{w}^T \mathbf{x}}} = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$
$$P(y = -1 | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{\mathbf{w}^T \mathbf{x}}}$$

$$\log \frac{P(Y=1 \mid x)}{P(Y=-1 \mid x)} = w^T x + b.$$

• The decision boundary?
$$w^T x + b = 0.$$

Alternative view

• Predict y=1 if P(y=1|x,w) > P(y=-1|x,w)

Predict y=1 if P(y=1|x,w) > P(y=-1|x, w)

★ When does this happen?
★ $\frac{1}{1 + \exp(-w^T x)} > 0.5$ ⇒ 1 + $\exp(-w^T x) < 2$ ⇒ $\exp(-w^T x) < 1$ ⇒ $w^T x > 0$

Maximum likelihood estimation

Probabilistic model assumption:

$$P(y|\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-y\mathbf{w}^T\mathbf{x})}$$

The log-likelihood of seeing a dataset
 D = {(x , y)} if the true weight vector was w:

$$\log P(D|\mathbf{w}) = -\sum \log \left(1 + \exp(-y\mathbf{w}^T\mathbf{x})\right)$$

 $P(D|w) = \prod_{i} P(y_i|x_i, w)$ $\Rightarrow \log P(D|w) = \sum_{i} \log P(y_i|x_i, w)$

Minimizing negative log-likelihood

Log likelihood

$$\log P(D|\mathbf{w}) = -\sum \log \left(1 + \exp(-y\mathbf{w}^T\mathbf{x})\right)$$

Logistic regression

$$\min_{\mathbf{w},b} \quad \sum_{i} \log(1 + e^{-\mathbf{y}_{i}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i})})$$

Let's add some prior Simpler is better ⇒ add Gaussian Prior

Add Gaussian Prior

- \clubsuit Simpler is better \Rightarrow add Gaussian Prior
- Suppose each element in w is drawn independently from the normal distribution centered at zero with variance σ^2
- Bias towards smaller weights

$$P(w_i) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{w_i^2}{2\sigma^2}\right)$$

Regularized Logistic regression

$$P(w_i) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{w_i^2}{2\sigma^2}\right)$$

Remember we are in the log space

$$\log P(\mathbf{w}) = -\frac{1}{2\sigma^2} \mathbf{w}^T \mathbf{w} + \text{constant terms}$$

 $P(w|D) \propto P(w,D) = P(D|w)P(w)$

Learning:
 Find weight vector by maximizing the posterior distribution P(w | D)

Maximum a posteriori estimation

Put them together

 $P(w|D) \propto P(w,D) = P(D|w)P(w)$

Learning: Find weight vector by maximizing the posterior distribution P(w | D)

$$\log P(D, \mathbf{w}) = -\frac{1}{2\sigma^2} \mathbf{w}^T \mathbf{w} - \sum_i \log \left(1 + \exp(-y \mathbf{w}^T \mathbf{x})\right)$$
prior
Log-likelihood
$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_i \log(1 + e^{-y_i(\mathbf{w}^T \mathbf{x}_i)})$$
UCLAENCINEERING
$$CS6501 \text{ Lecture } 2$$
73

Regularized loss minimization

L1-Loss SVM

$$\min_{w} \frac{1}{2} w^{T} w + C \sum_{i} \max(0, 1 - y_{i}(w^{T} x_{i}))$$

$$* L2-Loss SVM$$

$$\min_{w} \frac{1}{2} w^{T} w + C \sum_{i} \max(0, 1 - y_{i}(w^{T} x_{i}))^{2}$$

*** Logistic Regression (regularized)**

$$\min_{w} \frac{1}{2} w^{T} w + C \sum_{i} \log(1 + e^{-y_{i}(w^{T} x_{i})})$$

*** Loss over training data + regularizer**

How to learn (how to optimize the objective function?)

$$\min_{\boldsymbol{w}} \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_i \max(0, 1 - y_i(\boldsymbol{w}^T \boldsymbol{x}_i))$$

This function is convex

Many convex optimization methods can be used

- Stochastic (sub)-gradient descent
- Coordinate descent methods
- Newton methods

LBFGS

Convexity

CS6501 Lecture 2

Non convex minimization is hard

You may end up with some local minimum

Convex optimization is relatively easy

Ensure that there are no local minima

Note: need special design for functions that are not differentiable (e.g., hinge loss)

CS6501 Lecture 2

Different optimization techniques

Some methods (e.g., SGD, CD) are fast in the early stage of optimization

Some methods (e.g., Newton methods) converge faster

Results from http://www.cs.virginia.edu/~kc2wc/papers/ChangHsLi08.pdf

CS6501 Lecture 2

Why not gradient descent?

For some functions, gradient may not exist

$$\min_{w} \frac{1}{2}w^{T}w + C\sum_{i} \max(0, 1 - y_{i}(w^{T}x_{i}))$$

Solution: use sub-gradient

$$f(w) = \frac{1}{2} w^{T} w + C \sum_{i} \max(0, 1 - y_{i} w^{T} \mathbf{x}_{i})$$

$$= \frac{1}{|D|} \sum_{i} (\frac{1}{2} w^{T} w + C' \max(0, 1 - y_{i} w^{T} \mathbf{x}_{i}))$$

$$\equiv \frac{1}{|D|} \sum_{i} f_{i}(w)$$

$$\nabla f(w) = \frac{1}{|D|} \sum_{i} \nabla f_{i}(w)$$

$$\nabla f_{i}(w) \equiv \begin{cases} w & \text{if } y_{i}(w^{T} \mathbf{x}_{i}) > 1 \\ w - C' y_{i} x_{i} & \text{otherwise} \end{cases},$$

Stochastic gradient descent

$$f(w) = \frac{1}{2} w^{T} w + C \sum_{i} \max(0, 1 - y_{i} w^{T} x_{i})$$

$$= \frac{1}{|D|} \sum_{i} (\frac{1}{2} w^{T} w + C' \max(0, 1 - y_{i} w^{T} x_{i}))$$

$$\equiv f_{i}(w)$$

$$\nabla f(w) = \frac{1}{|D|} \sum_{i} \nabla f_{i}(w) = E_{i \sim D} \nabla f_{i}(w)$$

Approximate the true gradient by a gradient at a single example at a time

Repeat until converge: Randomly pick one sample (x_i, y_i) Update w \leftarrow w $- \eta \nabla f_i(w)$

Stochastic Sub-gradient Descent

Given a training set $\mathcal{D} = \{(x, y)\}$

- 1. Initialize $w \leftarrow \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch $1 \dots T$:
- 3. For (x, y) in \mathcal{D} :
- 4. Update $w \leftarrow w \eta \nabla f(w)$
- 5. Return w

$$f(w) \equiv \frac{1}{2} w^T w + C \sum_i \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i))$$

Stochastic (sub)-gradient descent for SVM

Given a training set $\mathcal{D} = \{(x, y)\}$ 1. Initialize $w \leftarrow \mathbf{0} \in \mathbb{R}^n$ 2. For epoch $1 \dots T$: 3. For (x, y) in \mathcal{D} : if $y(w^{\mathsf{T}}x) < 1$ 4. 5. $w \leftarrow (1 - \eta)w + \eta C yx$ 6. else $w \leftarrow (1 - \eta)w$ 7. Return w 8.

The Perceptron Algorithm [Rosenblatt 1958]

Given a training set $\mathcal{D} = \{(x, y)\}$

- 1. Initialize $w \leftarrow \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch $1 \dots T$:
- 3. For (x, y) in \mathcal{D} :
- 4. if $y(w^{T}x) < 0$
- 5. $w \leftarrow w + \eta y x$
- 6. Return w

Prediction:
$$y^{\text{test}} \leftarrow \text{sgn}(w^{\top}x^{\text{test}})$$

The Perceptron Algorithm [Rosenblatt 1958]

Given a training set $\mathcal{D} = \{(x, y)\}$

- 1. Initialize $w \leftarrow \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch $1 \dots T$:
- 3. For (x, y) in \mathcal{D} :
- 4. if $y(w^{T}x) < 0$
- 5. $w \leftarrow w + \eta y x$
- 6. Return w

Prediction: y^{test}

Perceptron effectively minimizing:

$$\sum_{i} \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i))$$

A General Formula

 $\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} f(y; w, x)$ input model parameters output space Inference/Test: given w, x, solve argmax Learning/Training: find a good w ***** Today: $x \in \mathbb{R}^n$, $\mathcal{Y} = \{-1,1\}$ (binary classification)

Binary Linear Classifiers

$$\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} f(y; \boldsymbol{w}, \boldsymbol{x})$$

$$\boldsymbol{*} \boldsymbol{x} \in \mathbb{R}^{n}, \mathcal{Y} = \{-1, 1\}$$

$$\boldsymbol{*} f(y; \boldsymbol{w}, \boldsymbol{x}) \stackrel{\text{def}}{=} y(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b}) = y(\sum_{i} w_{i} x_{i} + \boldsymbol{b})$$

$$\boldsymbol{*} \operatorname{argmax}_{y \in \mathcal{Y}} f(y; \boldsymbol{w}, \boldsymbol{x}) = \begin{cases} 1, \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b} \ge 0\\ -1, \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b} < 0\\ -1, \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b} < 0 \end{cases}$$

$$= \operatorname{sgn}(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b})$$

(break ties arbitrarily)