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Announcements

< Waiting list: If you're not enrolled, please sign up.

+» We will use Piazza as an online discussion
platform. Please sign up here:

piazza.com/ucla/fall2017/cs269
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This Lecture

“* Supervised Learning

“* Linear Classifiers
*»» Perceptron Algorithm
“* Support Vector Machine
“» Logistic Regression

“* Optimization in machine learning
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The Badges game

+ Naoki Abe - Eric Baum

+» Conference attendees to the ICML 1994 were
given name badges labeled with + or —.

< What function was used to assign these labels?
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Training data

+ Naoki Abe

- Myriam Abramson

+ David W. Aha

+ Kamal M. Ali

- Eric Allender

+ Dana Angluin

- Chidanand Apte
+ Minoru Asada
+ Lars Asker

+ Javed Aslam

+ Jose L. Balcazar
- Cristina Baroglio
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+ Peter Bartlett

- Eric Baum

+ Welton Becket
- Shai Ben-David
+ George Berg

+ Neil Berkman
+ Malini Bhandaru
+ Bir Bhanu

+ Reinhard Blasig
- Avrim Blum

- Anselm Blumer
+ Justin Boyan
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+ Carla E. Brodley
+ Nader Bshouty
- Wray Buntine

- Andrey Burago
+ Tom Bylander
+ Bill Byrne

- Claire Cardie

+ John Case

+ Jason Catlett

- Philip Chan

- Zhixiang Chen
- Chris Darken



Raw test data

Gerald F. DeJong
Chris Drummond
Yolanda Gil
Attilio Giordana
Jlarong Hong

J. R. Quinlan
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Priscilla Rasmussen
Dan Roth

Yoram Singer

Lyle H. Ungar
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Why we need machine learning?

“* There is no (or limited numbers of) human
expert for some problems
“* E.qg.: Identify DNA binding sites, predicting disease
progression, predicting protein folding structure

T =Y = ko)
G : 3
Unfolded 1 s Folded
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Why we need machine learning?

“* There is no (or limited numbers of) human
expert for some problems

“* Humans can perform a task, but can't
describe how they do it
“* E.g.: Object recognition
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Why we need machine learning?

“* There is no (or limited numbers of) human
expert for some problems

“* Humans can perform a task, but can't
describe how they do it

+*» The desired function is hard to be wrltten
down in a closed form > A N
* E.g.,: predict stock price
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Supervised learning

.

Input Output

Target function ™.

...... WY..z..fiQ‘.).....

K
xs X Learned Model \Y© Y
y = f(x) |
An item x An itemy
drawn from an drawn from a label

instance space X space Y

A
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Supervised learning

-

.

Input

xe X

An item X
drawn from an

instance space X

~

/
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X is represented in a feature space
- Typically x € {0,1}" or RV

- Usually represented as a vector
- We call it input vector

CS6501 Lecture 2
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Supervised learning

y is represented in output space Output
(label space)

Different kinds of output:

Binary classification:

y €{-1,1) vye'vy

e Multiclass classification:
y € {1,2,3,...K}

* Regression: An item Y
y ER drawn from a label
e Structured output
y €{1,2,3,..K}N Space y
- /
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Learning the mapping

7 X ™
Input X ............. ( Output
: Target function ™,
...... vz
x& X yE y
An item x An itemy
drawn from an drawn from a label
instance space X space Y
\ v A v
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Goal

“ Find a good approximation of f*(-)
% Good in what sense?
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Under-fitting and over-fitting

“* Which classifier (blue line) is the best one?
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Bias V.S. Variance

<+ Remember, training data are subsamples drawn from
the true distribution

Low Variance High Variance
< Exam strategy:
% Study every chapter well |
% A+: Low var & bias é Q
% Study only a few chapters . :
% A+? B? C? Low bias; High var
% Study every chapter roughly .

High Bias

< B+: Low var; high bias Py
% Go to sleep f 7
% B ~D: High var, high bias :

JCLA ncnesting CS6501 Lecture 2 .




Questions of interest

“* Representation
“* How to represent x, y (and latent factors)
* Modeling
** What assumptions we made
“ i.e., what is the hypothesis set of f ?
< Algorithms
% (learn) Give data, how to learn f?
% (inference) Give test instance x and f, how to
evaluate f(x)?
“* Learning protocols
“* What is the goal of the learning algorithm?

UCLA encGINEERING
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Different learning protocols
(more technical terms)

“* Supervision signals?
“* Supervised learning, semi-supervised learning,
unsupervised learning, bandit feedback

** What to be optimized?
*» Batch learning: minimize the risk
(expected average loss)
“* Online learning:
Receive one sample and make prediction

Receive the label; then update
minimize the accumulated loss

UCLA encineerING CS6501 Lecture 2 18
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Linear classification

Teacher ﬁ -
Skl y

Today, we are going to learn about matrix

Expectation

UCLA ENnGINEERING

Computer Science
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Linear classifiers

“* For now, we consider binary classification

“ Given a training set D = {(x,y)}, find a
linear threshold units classify an example x

using the classification rule:
sgn(b + wlx) = sgn(b + Y; w;x;)
e b+wlx > 0= Predicty=1
* b+ wlx < 0= Predicty =-1

S

CS6501 Lecture 2 20
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The geometry interpretation

sgn(b +w; x; + w,X,)

b +w, x; + w,x,=0

+

[w; w,]

+
i+

++

UCLA enGINEERING
Computer Science

X5

X1

In n dimensions,

a linear classifier
represents a hyperplane
that separates the space
into two half-spaces

CS6501 Lecture 2
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A simple trick to remove the bias term b

wlx +b

W' bl 3]

wW-X

w=[w! b]"

¥ = [xT 1]
For simplicity, I'll write w and X as w and x
when there is no confusion
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Some data are not linearly separable

=
i+

-+
i+

UCLA ENnGINEERING
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But they can be made liner

o o e o 4+ 4 4 4 o o o o

Using a different representation
e.g., feature conjunctions,
non-linear mapping

UCLA encGINEERING
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Exercise: can you make these data
points linearly separable?

alil +
- T ++F,
= + + +
X1
. -
++3F, S
+ ++ -
X2
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Exercise: can you make these data
points linearly separable?

- - +
. ++3,

+ -
++3}, - -

X;
Adding feature x; x,

UCLA ENnGINEERING
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Linear classifiers

++» Let's take a look at a few linear classifiers

“* We will show later, they can be written in
the same framework!

** Perceptron
“* (Linear) Support Vector Machines
*» Logistic Regression

UCLA enGINEERING CS6501 Lecture 2
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The Perceptron Algorithm [rosenblatt 1958]

“» Goal: find a separating hyperplane

% Can be used in an online setting:
considers one example at a time

“* Converges if data is separable
-- mistake bound

UCLA encGINEERING
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The Perceptron Algorithm [rosenbiatt 1958]

Given a training set D = {(x,y)}
Initializew « 0 € R"
For epoch 1...T:
For (x, y) in D:
9 = sgn(w'x) (predict)

ify#y, wewHnyx (update)
Return w

Learning rate

Prediction: y*st « sgn(w'xs)

UCLA encGINEERING
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The Perceptron Algorithm [rosenbiatt 1958]

Given a training set D = {(x,y)}
Initializew « 0 € R"
For epoch 1..T:
For (x,y) in D:
if y(w'x) <0
W< W+1nyx
Return w

Prediction: y*st « sgn(w'xs)
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Geometry Interpretation

X (withy = +1)
next item to be ' . e | | ol 'NC®
classified ° ) N o wx=0
05k ‘ X as a vector j& 05} New
’ decision
A~ [ boundar
Current 0 of y
decision
boundary 05} . ol W A
New weight
. X as a vector .
= 205 QNeight vector/; = 05 h Jdded to WW vector r 1
Weight vector points to the positive side
* Positive
(Figures from Bishop 2006) Negatie
UCLA omesiing CS6501 Lecture 2 y




Perceptron in action

wx =0
X (withy = +1) New
next item to be decision
- X as a vector
classified FJ boundary

Current
decision | ol
boundary ° ]
w

0.5} )
Current weight

vector
. 05 0 05 -

(Figures from Bishop 2006)
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1 .« . " 1
L °
®
wx =0 105}

X as a vector added

tow
n ® _1
-0.5 0 0.5 1 -1
New weight
vector
= Positive
“ Negative
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Convergence of Perceptron

+* Mistake bound

¢ If data is linearly separable (i.e., a good linear
model exists), the perceptron will converge
after a fixed number of mistakes [Novikoff 1962]
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Marginal Perceptron -- Motivation

“* Which separating hyper-plane is better?

[
|
B x
.
o ® XX xX
o o i X x o
o oo T XX x
*® o % % X
L o ] x
P
*e 1|l %%, x Smaller(
o* % o 1| X xX o
o e * | X I ¢ ®
‘. .II x x ‘
0.'00¢i - e,
- .Q I X
oo” )]
o
oo | h]

| I I |

UCLA avanesting CS6501 Lecture 2 24




The Perceptron Algorithm [rosenbiatt 1958]

Given a training set D = {(x,y)}
Initializew « 0 € R"
For epoch 1..T:
For (x,y) in D:
if y(w'x) <0
W< W+1nyx
Return w

Prediction: y*st « sgn(w'xs)

UCLA encGINEERING
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The Perceptron Algorithm [rosenbiatt 1958]

Given a training set D = {(x,y)}

Initializew <« 0 € R" B
ix X
For epoch 1...T: Jooixx xx
. . e oo i ix xxxx
For (x,y) in D: e® e |l x xxX
. T $ 0 es Xy x
if y(w'x) <6 oot % |l X X
o* * i X g X
wewtnyx 0 G g
® |
Return w teclll A

Prediction: y*st « sgn(w'xs)
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How about batch setting?

“* Learning as loss minimization
1. Collect training data D = {(x, y)}

2. Pick a hypothesis class
“ E.qg., linear classifiers, deep neural networks

3. Choose a loss function
< Hinge loss, negative log-likelihood

% We can impose a preference (i.e., prior) over
hypotheses, e.g., simpler is better

4. Minimize the expected loss
v SGD, coordinate descent, Newton methods, LBFGS

UCLA encineeriNG CS6501 Lecture 2 37
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Batch learning setup

< D = {(x,y)} drawn from a fixed, unknown
distribution D

“* A hidden oracle classifier f*, y = f*(x)
“* We wish to find a hypothesis f € H that mimics f*

< We define a loss function L(f(x), f*(x)) that
penalizes mistakes

<+ What is the ideal f?
argmin Exp [L(f(x), f*(x))]

fEH
expected loss

UCLA encGINEERING
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Batch learning setup

< D = {(x,y)} drawn from a fixed, unknown distribution D
“* A hidden oracle classifier f*, y = f*(x)
% We wish to find a hypothesis f € H that mimics f~*

% We define a loss function L(f (x), f*(x)) that penalizes

mistakes
Let’s define

Lo-1,y)=1ify=+y

“* What is the ideal f?

’

L)

0ify=y

ijeig Ex-p |Loc1(f (), fX(0)] = scnelg E. p| #mistakes]

UCLA encGINEERING
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How can we learn f from D

“* We don't know D, we only see samples in D

* Instead, we minimize empirical loss

min — ‘D‘ % eyyen [L(F G0, )]

UCLA encGINEERING
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How can we prevent over-fitting?

< With sufficient data, D ~ D
“* However, if data is insufficient = overfitting
“* We can impose a preference over models

min R(f) +

feH ‘D‘ Z(xy)ED [L(f(X) y)]

“* We will discuss the choices of R(f) later

UCLA enGINEERING CS6501 Lecture 2
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How about the loss function?

*» Usually, we cannot minimize 0-1 loss
*» It is a combinatorial optimization problem: NP-hard

* ldea: minimizing its upper-bound

5
4 \ - zero-one loss
; - |ogistic loss

—
N\
=
b
s, hinge loss
~

1 \

0

-4 -2 0 2 4

yf(x)

UCLA encGINEERING

CS6501 Lecture 2 42

Computer Science



How about the loss fu

*» Usually, we cannot mini
It is a combinatorial optimiz

*» ldea: minimizing its upper-bound -

Ly, f(x))

UCLA enGINEERING

5
4 \ - zero-one loss
; - |ogistic loss

2 hinge loss
1 \
0

-4 -2 0 2 4

yf(x)
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Many choices

< We are minimizing with R, L, H with your choice
1

min RO + 51 Zeeen LU, )

+» Let consider H is a set of d-dimensional linear function

“* H can be parameterized as
{f(x): wix > 0},w € R?

UCLA encGINEERING
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Back to Linear model

< We are minimizing with R, L, H with your choice
1

min RU) + 151 Zen [LFC.)]

» Let decide H to be a set of d-dimensional linear
function

“* H can be parameterized as
{f(x): wi'x > 0},w € R?

< We are going to fine the best one based on D
% i.e., find the best setting of w and b

UCLA encGINEERING
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Rewrite our optimization problem

% Minimizing the empirical loss:
1
min R(f) + D) =7 Zxyeb (L (x),y)]

fEH

“* Minimizing the empirical loss with linear function

L

min R(w) + ‘A‘Z(xy)ep [L(x,w,y)]

+* What choices of R and L we have?

UCLA encGINEERING
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Many choices of loss function (L)

Many loss functions exist

— Perceptron loss Lperceptron(y, X, w) = max(0, —yw’ x)

— Hinge loss (SVM) Lizinge(y, x,w) = max(0,1 — yw" x)
T

— Exponential loss (AdaBoost) L gzponential(y, X, W) = e ¥ *

— Logistic loss (logistic regression)
T
LLogistic(ya X, W) — log(l +e™¥" x)

UCLA ncinesing CS6501 Lecture 2 47




1 |

Zero-one loss
Hinge loss
Perceptron loss

Log loss

Squared hinge loss
Modified huber loss

Computer Science

y-f(z)
CS6501 Lecture 2
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Many choices of R(w)

“* Minimizing the empirical loss with linear
function

min R (w) +

werd ‘D‘ Z(xy)ED [L(X w, y)]

“* Prefer simpler model: (how?)

% Sparse:
R(w) = #non-zero elements in w (LO regularizer)

R(w) = X lw;] (L1 regularizer)
% Gaussian prior (large margin w/ hinge loss):
Rw) =Y, w=wTw (L2 regularizer)

UCLA encGINEERING
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Support Vector Machines
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Support Vector Machines (SVMs)

“* R(w): 12-loss, L(w, x,y): hinge loss

min %WTW + C ),; max(0, 1 — yi(WTXi))
w

“* Maximizing margin (why?!!)

|
|
. 1% .
PY 1 X X xx ."l
e %o i, X x o %o}
e oo iixxxx ® oo
] Y \
o% e ||l X xxX e o
oo o, ;:xxxx LK R
s o o e ®
& ® X X [}
a o ]! xX *® L o
.0 .}: xxx ‘0
® g%o0e0p! * o%0
o | X o
® e ’i: ® L
o 'Y
** h] o
|
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The hinge loss

UCLA eNGINEERING
Computer Science
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Loss

Hinge: Penalize predictions even if they
are correct, but too close to the margin

Hinge: Incorrect

predictions get a
linearly increasing
penalty with w'z

Hinge: No penalty if w'x is far
away from 1 (-1 for negative
examples)

UCLA avanesting CS6501 Lecture 2 53




Let’s view it from another direction

“* SVM learns a model won D = {(x;,y;)} by
solving:

.1
min -w w
wb 2

st yi(wlx;+b) =>1,V(x;,y,) €ED
& s (Hard SVM)
N //‘;
5
S Why the margin is ——7?
& Y S Tl
/3*{0// arg max ——
{® [Iw |
= arg min ||w ||
o © O _ ) 2
= arg min ||w ||
=arg min wlw

X 136501 Lecture 2 54




Soft SVMs

<+ Data is not separable = hard SVM fails
Why?
“* Introduce a set of slack variable {¢;}

= relax the constraints
* Given D = {(x;,y;)}, soft SVM solves:

!
min ~wlw +|C]}}; ¢ (Soft SVM)

wb,& 2
s.tyi(w'x; + Ibil-— S 6= 0 Vi
penalty parameter

UCLA encGINEERING
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An alternative formulation

vrlpgr% %WTW +CY; &
s.t yiwlx;+b)>1-¢;& >0 Vi
“* Rewrite the constraints:
§=1— yy(wixj+b); §=0 Vi
“* In the optimum, &, = max(0, 1 — y;(w'x; + b))

2 Soft SVM can be rewritten as:

min wTwl+ C[X; max(0, 1 — y;(wTx; + b))

wb 2
\—— Regularization term “— Empirical loss

UCLA encGINEERING
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An alternative formulation

min ~wTw + C Y, &,

We can simply “b” using the trick

However, we will add b into the regularization term
It is often okay, if we have many features

min ~w'wl|+ C[%; max(0, 1 — y;(wTx; + b))

\——>Regularization term\_’ Empirical loss

UCLA evainszaine CS6501 Lecture 2 57




Balance between regularization and
empirical loss

(a) Training data and an over- (b) Testing data and an over-
fitting classifier fitting classifier
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Balance between regularization and
empirical loss

(c) Training data and a better (d) Testing data and a better
classifier classifier

DEMO

. %ﬂ CS6501 Lecture 2




Regularized loss minimization

“*L1-Loss SVM

mui’n %wTw + C Y; max(0, 1 — y;(w'x;))
“ L2-Loss SVM

min %WTW + C Y, max(0,1 — y;j(w'x;))?
“* Logistic Regression (regularized)

mui]n %WTW + CY;log(1+ e_Yi(WTXi))

“* Loss over training data + regularizer

UCLA enGINEERING CS6501 Lecture 2
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Loss Functions

loss
N

Logistic regression

L1-loss function
L2-loss function

UCLA eNGINEERING
Computer Science
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Logistic regression
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Logistic function
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logistic function / sigmoid function

“*When z - o whatis g(z2)?
*When z » —oo whatis g(z2)?

“*Whenz=0 whatis g(z2)?

o(z) =

l1+e % -

UCLA enGINEERING CS6501 Lecture 2
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Why sigmoid?

Least squares fit
o(wz + b) fit to y—

. 0.5
wz + b fit to y—=

o1}
0:5

UCLA avanesting CS6501 Lecture 2 54




Probabilistic Interpretation

1
min inW + Cz log(1 + e_Yi(WTXi))
w
i

Assume labels are generated using the following
probability distribution:

1 -
eV ¥ 1
P — 1 y —_ —
(y=1x,w)= - S S
1
Ply=—-1|x,w) =

UCLA encGINEERING
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eV * 1
P = ]_ - = —
1
Ply=—-1x,w) =

1
1 + exp (—yw!x)

P(y|x,w) =

How to make prediction?

Predict y=1if P(y=1|x,w ) >p (y=-1|x, w)

UCLA encGINEERING
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Decision boundary?

Py =1|x,w) =

P(y — _1|X, W) — 1 + ewa

P(Y =1|x)

R
PiY=—1]x) "W *Tb

log

“+ The decision boundary?

w'x+b=0.

UCLA enGINEERING
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Alternative view

< Predict y=1if P(y=1|x,w ) > P(y=-1|x, w)

- P redict y=1 if P(y=1|x.,w ) = P(y= —-1]|x, w)

- VWhen does this happen™?
a

-
-3

14+exp(—wZ x> = 0.5

= 1 + exp(—w T x) = 2
— exp(—w 7T x) = 1

= w?Zlx = O

“* When does this happen?
. 1

)

* > (0.5

1+exp(—wTx)

= 1+ exp(—wlx) <2
= exp(—wix) <1 /

>wlx >0

?S’ff"ﬂ CS6501 Lecture 2




Maximum likelihood estimation

*+ Probabilistic model assumption:
1

1 + exp (—ywIx)

P(y|x,w) =

“* The log-likelihood of seeing a dataset
D ={(x, vy )} if the true weight vector was w:

log P(D|w) = Zlog 1+ exp(—yw’ x)

P(D|w) =TII; P(y;lx;, w)
= log P(D|w) = Y;log P(y;lx;, w)

UCLA encGINEERING
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Minimizing negative log-likelihood
“» Log likelihood
log P(D|w) = Zlog 1+ exp(—yw’ x)

“» Logistic regression

min ),;log(1+ e_Yi(WTxi))
w,b

** Let’'s add some prior
“» Simpler is better = add Gaussian Prior

UCLA encGINEERING
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Add Gaussian Prior

“» Simpler is better = add Gaussian Prior

“* Suppose each element in w is drawn

independently from the normal distribution

centered at zero with variance o2

*+ Bias towards smaller weights

P(wz) -

UCLA encineerING
Computer Science

1

T [CX T w?'z
g p 20’2

2T
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Regularized Logistic regression

P = iz (~355)

Ww;) = eX D
Varo D\ 207

“* Remember we are in the log space

1
log P(w) = —ﬁWTW + constant terms

“* Put them together
% P(w|D) x P(w,D) = P(D |w)P(w)
“ Learning:

Find weight vector by maximizing the posterior
distribution P(w | D)

UCLA encGINEERING
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Maximum a posteriori estimation

“* Put them together
% P(w|D) < P(w,D) =P(D |w)P(w)

“ Learning: Find weight vector by maximizing the
posterior distribution P(w | D)

1
log P(D,w) = 20_2W W — Zlog 1 + exp(—yw’ x)
prior Log-likelihood

1
min EWTW +C 2 log(1+ e_Yi(WTXi))
w

UCLA encGINEERING
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Regularized loss minimization

“*L1-Loss SVM

mui’n %wTw + C Y; max(0, 1 — y;(w'x;))
“ L2-Loss SVM

min %WTW + C Y, max(0,1 — y;j(w'x;))?
“* Logistic Regression (regularized)

mui]n %WTW + CY;log(1+ e_Yi(WTXi))

“* Loss over training data + regularizer

UCLA enGINEERING CS6501 Lecture 2
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How to learn
(how to optimize the objective function?)

min %WTW + C ),; max(0, 1 — Yi(WTXi))
w

+s» This function is convex

“* Many convex optimization methods can be used
s+ Stochastic (sub)-gradient descent
> Coordinate descent methods
“* Newton methods
“* LBFGS
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Convexity

tf (1) + (1 =) f (x2)

[tz + (1 = t)xs)

5} try 4+ (1 —t)xs T
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Non convex minimization is hard

“* You may end up with some local minimum

-0.5
-1

UCLA enGINEERING

CS6501 Lecture 2 77

Computer Science



Convex optimization is relatively easy

++» Ensure that there are no local minima

“* Note: need special design for functions that
are not differentiable (e.g., hinge loss)
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Different optimization techniques

——CDPER
——CD
——TRON
——CMLS

Some methods (e.g., SGD, CD)
*=+ are fast in the early stage of
optimization

Relative function value difference

Some methods (e.g., Newton
methods) converge faster

0 06 1 16 2 28§ 3 3§65 4
Training Time (s)
(a) astro-physic

Results from http://www.cs.virginia.edu/~kc2wc/papers/ChangHsLi08.pdf
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Gradient descent

J(w)

<
~

w4 W3 w2 w!
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Why not gradient descent?

“* For some functions, gradient may not exist

min %WTW + C X;max(0, 1 — Yi(WTXi))
w

“» Solution: use sub-gradient

C' = |D|xC

flw) = %WTW + C Y, max(0, 1 — y;w'x;)
1

Zi(gl wiw + ' max(0, 1 — y;w'x;))

Ifl
= ﬁzifi(w) —
VfW) = 0 B Vfi(w) /

o w if yi(w'x;) > 1
Vf(w) =
fi(w) {W — C'y;x; otherwise
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Stochastic gradient descent

fw) = %wTw + € Y;max(0, 1 — y;w'x;)
_ |T%| zi(zl wlw + ¢’ max(0, 1 — y;wTx;))
filw)

VW) = =% V(W) = Ei-pVf;(w)

D]

“» Approximate the true gradient by a
gradient at a single example at a time

Repeat until converge:
Randomly pick one sample (x;, y;)
Update w « w — nVf;(w)
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Stochastic Sub-gradient Descent

Given a training set D = {(x,y)}
Initializew « 0 € R"
For epoch 1..T:
For (x,y) in D:
Update w «w —nV f(w)
Return w

fw) = %WTW + CY,;max(0, 1 — y;(w'x;))
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Stochastic (sub)-gradient descent for SVM

Given a training set D = {(x,y)}
Initializew « 0 € R"
For epoch 1...T:
For (x,y) in D:
if y(w'x) <1
we((1l—-nw+nCyx
else
we (1—nw
Return w
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The Perceptron Algorithm [rosenbiatt 1958]

Given a training set D = {(x,y)}
Initializew « 0 € R"
For epoch 1..T:
For (x,y) in D:
if y(w'x) <0
W< W+1nyx
Return w

Prediction: y*st « sgn(w'xs)
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The Perceptron Algorithm [rosenbiatt 1958]

Given a training set D = {(x,y)}
Initializew « 0 € R"
For epoch 1...T:
For (x,y) in D:
if y(w'x) <0
W< W+1nyx
Return w

Perceptron effectively minimizing:

Prediction: y®st ZmaX(O, 1— yi(wTx)))
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A General Formula

EK— iInput

model parameters

y = argmaxygq f (¥

_ output space
“ Inference/Test: given w, x, solve argmax

“ Learning/Training: find a good w
“ Today: x € R",Y = {—1,1} (binary classification)
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Binary Linear Classifiers

y = argmaxyey f (y; W, X)

“x€e€RYY ={-1,1}

e fy;wx) € yw'x+ b) =y, wix; + b)
Lwix+b=>0

—1,wx+b <0
=sgn(w'x + b)

\/

% argmax,ey fy;w,x) = {
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