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Previous Lecture

< Binary linear classification models
“» Perceptron, SVMs, Logistic regression

** Prediction is simple:
< Given an example x, prediction is sgn(w!'x)
“* Note that all these linear classifier have the same
inference rule
“ In logistic regression, we can further estimate the
probability
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This Lecture

+s» Multiclass classification overview

** Reducing multiclass to binary
¢ One-against-all & One-vs-one
¢ Error correcting codes
< Training a single classifier
**» Multiclass Perceptron: Kesler’'s construction

“* Multiclass SVMs: Crammer&Singer formulation
*» Multinomial logistic regression
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What is multiclass

% Output € {1,2,3, ...K}
* In some cases, output space can be very large
(i.,e., Kis very large)

< Each input belongs to exactly one class
(c.f. in multilabel, input belongs to many classes)
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Multi-class Applications in NLP?
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Two key ideas to solve multiclass

** Reducing multiclass to binary

*» Decompose the multiclass prediction into
multiple binary decisions

*» Make final decision based on multiple binary
classifiers
< Training a single classifier
*** Minimize the empirical risk
+»» Consider all classes simultaneously

UCLA encGINEERING

CS6501 Lecture 3

Computer Science



Reduction v.s. single classifier

*+» Reduction

“* Future-proof: binary classification improved so
does muti-class

> Easy to implement
“* Single classifier

*» Global optimization: directly minimize the
empirical loss; easier for joint prediction

< Easy to add constraints and domain knowledge
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A General Formula

EK— iInput

model parameters

N\

y = argmax,,

af

_ output space
“ Inference/Test: given w, x, solve argmax

“ Learning/Training: find a good w
“ Today: x € R",Y = {1,2, ... K} (multiclass)
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This Lecture

+s» Multiclass classification overview

*+ Reducing multiclass to binary
¢ One-against-all & One-vs-one
¢ Error correcting codes
< Training a single classifier
**» Multiclass Perceptron: Kesler’'s construction

“* Multiclass SVMs: Crammer&Singer formulation
*» Multinomial logistic regression
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One against all strategy

o
.
‘ :
b £

_—

UCLA encGINEERING

CS6501 Lecture 3

Computer Science

10



One against All learning

...
*»* Multiclass classifier o ©
@)
“ Function f:R" - {1,2,3,...K} , % %
o

*+» Decompose into binary problems

.o. .o.. \...\.1..\ .o. .o..
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One-again-All learning algorithm

% Learning: Given a dataset D = {(x;, y;)}
x; € R",y; € {1,2,3,..K}
“» Decompose into K binary classification tasks
% Learn K models: w{,w,, w3, ... Wg
“* For class k, construct a binary classification
task as:
*» Positive examples: Elements of D with label k
“* Negative examples: All other elements of D

“* The binary classification can be solved by any
algorithm we have seen

UCLA encGINEERING

CS6501 Lecture 3 12

Computer Science



One against All learning

...
*»* Multiclass classifier o ©
@)
“ Function f:R" - {1,2,3,...K} , % %
o

*+» Decompose into binary problems

Ideal case: only the correct label will have a positive score
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One-again-All Inference

< Learning: Given a dataset D = {(x;,y;)}
xl (S Rn, yl € {1)2)3l K}

s Decompose into K binary classification tasks
* Learn K models: w{,w,, ws, ... Wk
“ Inference: “Winner takes all”

o o T
“ y=argmaXyer 2 g} Wy X

Loy — T T T
For example: y = argmax(Wyiqci X Whine X Woreen X)

< An instance of the general form
y = argmaxyey f(¥; W, X)

w = {wy,wy, ..wi}, f(y; W, X) =w X

UCLA evainszaine CS6501 Lecture 3 "




One-again-All analysis

“* Not always possible to learn

“» Assumption: each class individually separable from
all the others

“* No theoretical justification

“* Need to make sure the range of all classifiers is
the same — we are comparing scores produced
by K classifiers trained independently.

< Easy to implement; work well in practice %
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One v.s. One (All against All) strategy
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One v.s. One learning

“* Multiclass classifier
“* Function f:R" -2 {1,2,3,...,k}
*» Decompose into binary problems

Training

Test
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One-v.s-One learning algorithm

% Learning: Given a dataset D = {(x;, y;)}
x; € R",y; € {1,2,3,..K}
% Decompose into C(K,2) binary classification tasks
< Learn C(K,2) models: wy, Wy, W3, ... Wi, (k1) /2
“* For each class pair (i,j), construct a binary
classification task as:
“ Positive examples: Elements of D with label i

“* Negative examples Elements of D with label |

“* The binary classification can be solved by any
algorithm we have seen
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One-v.s-One Inference algorithm

¢ Decision Options:
*» More complex; each label gets k-1 votes
< Output of binary classifier may not cohere.

“* Majority: classify example x to take label i
iIf i wins on x more often than j (j=1,...k)

* A tournament: start with n/2 pairs; continue with
winners
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Classifying with One-vs-one

Tournament Majority Vote

1 red, 2 yellow, 2 green
> A

All are post-learning and might cause weird stuff
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One-v.s.-one Assumption

“* Every pair of classes is separable

It is possible to
separate all k

classes with the
O(k?) classifiers

Decision
Regions
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Comparisons

% One against all
< O(K) weight vectors to train and store
“ Training set of the binary classifiers may unbalanced
“» Less expressive; make a strong assumption

“* One v.s. One (All v.s. All)

< O(K?) weight vectors to train and store

“* Size of training set for a pair of labels could be small
= overfitting of the binary classifiers

“* Need large space to store model
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Problems with Decompositions

** Learning optimizes over local meftrics
“* Does not guarantee good global performance
** We don’t care about the performance of the
local classifiers
¢ Poor decomposition = poor performance
+» Difficult local problems
*» Irrelevant local problems

< Efficiency: e.g., All vs. All vs. One vs. All

“* Not clear how to generalize multi-class to
problems with a very large # of output
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Still an ongoing research direction

Key questions:
“* How to deal with large number of classes
“* How to select “right samples” to train binary classifiers

*» Error-correcting tournaments
[Beygelzimer, Langford, Ravikumar 09]

% Logarithmic Time One-Against-Some

[Daume, Karampatziakis, Langford, Mineiro 16]

“» Label embedding trees for large multi-class tasks.
[Bengio, Weston, Grangier 10]
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Decomposition methods: Summary

++» General Ideas:

“* Decompose the multiclass problem into many
binary problems

** Prediction depends on the decomposition

*» Constructs the multiclass label from the output of
the binary classifiers

*» Learning optimizes local correctness

“* Each binary classifier don’t need to be globally
correct and isn’t aware of the prediction procedure
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This Lecture

+s» Multiclass classification overview

** Reducing multiclass to binary
¢ One-against-all & One-vs-one
¢ Error correcting codes
“* Training a single classifier
**» Multiclass Perceptron: Kesler’'s construction

“* Multiclass SVMs: Crammer&Singer formulation
*» Multinomial logistic regression
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Revisit One-again-All learning algorithm

% Learning: Given a dataset D = {(x;,v;)}
x; € R™y; € {1,2,3, .. K}

“» Decompose into K binary classification tasks
% Learn K models: w{,w,, w3, ... Wg
“* wy: separate class k from others

“* Prediction

n T
y =argmaXyer1 2 g} Wy X
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Observation

< At training time, we require w/ x to be positive for

examples of class i.

< Really, all we need is for w; x to be more than all
others = this is a weaker requirement

For examples with label i, we need

wix > WJ-TX for all j

UCLA encineerING
Computer Science
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Perceptron-style algorithm

For examples with label i, we need
T T :
wix >wjx forallj

% For each training example (x, y)
< If for somey’, wyx < wj,x mistake!
¢ Wy, —wy, +1x update to promote y
@ Wy, < Wy, — X update to demote y’

Why add nx to wy, promote label y:

Before update s(y) = < wy'®, x >

After update s(y) =< wy®,x >=< Wj(,)ld +nx, x >
=<wih x> 4n <x,x >

Note! <x,x>=xT x>0
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A Perceptron-style Algorithm

Given a training set D = {(x,y)}
Initializew « 0 € R"

For epoch 1..T: . .
For (x,) in D: How to analyze this algorithm
Y " |and simplify the update rules?

For y' +vy
if wyx <wy,x  make a mistake
Wy, < Wy, + X promote y
Wy, < wy, —nx  demote y
Return w

. . . T
Prediction: argmax, wy, x
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Linear Separability with multiple classes

*» Let’s rewrite the equation

wix>wix  forallj

“ Instead of having wy, w,, ws, ... wg, we want to
represent the model using a single vector w

wl| 2 |> WT for all |

* How? Change the input representation
Let’s define ¢ (x, y), such that

w'p(x, i) >w' d(x,j) V)

multiple models v.s. multiple data points
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Kesler construction

Assume we have a multi-class problem with K class and n features.

Wl-TX>W]Tx Vj wlho(x, i) >wlo(x,j) Vj
“* models:
Wy, Wo, ... Wy, wy € R™
“* Input:
X € R"
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Kesler construction

Assume we have a multi-class problem with K class and n features.

Wl-TX>W]Tx Vj wlho(x, i) >wlo(x,j) Vj
** models: “* Only one model:
Wi, Wy, ... W, wy € R™ w € R™K
< Input: P
x € R" W2
w= .
Lz | nKx1
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Kesler construction

Assume we have a multi-class problem with K class and n features.

wix>w x Vj w'p(x, D) >w' ¢p(x,j) V)
RN : < Only one model:
»* models: ) e pnK
W1, Wa, ... Wi, Wi € R < Define ¢(x,y) for label y
“* Input: being associated to input x
x € RT On]  xin y'" block;
: Zeros elsewhere
¢(x,y) = x/
‘On‘nle
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Kesler construction

Assume we have a multi-class problem with K class and n features.

wix>w x Vi wlho(x, i) >wlo(x,j) Vj
“* models: Wy - 0,
W1, Wo, ... Wk, : : 9Zcinyt’: bIo::]k;
wy € R" w = [Wy d(x,y)=|x qLﬁ
“ Input: W O.
W, 0,
x € R™ nkx1 nKx1

w' d(x,y) =wl x

oS Ll T CS6501 Lecture 3 35




Kesler construction

Assume we have a multi-class problem with K class and n features.

binary classification problem

wh¢(x,i) >w! ¢p(x,j) Vj /

=>w[p(x, ) — P(x,j)] >0 Vj

0,7 | xinit" block;

wy- s
5 x ﬁjth block
w =Wy [pCx, D) —p(x, )] =]

e

"nKXx1

NnKx1
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Linear Separability with multiple classes

d(x,1) =

UCLA encGINEERING

What we want
w' o (x, i) >w' ¢(x,j) V)
=>w'[p(x, 1) —p(x,))] >0 Vj

- nKx1 For all example (x, y) with all other labels y’ in

dataset, w in nK dimension should linearly separate

¢(x,0) — ¢d(x,j) and —[p(x, 1) — ¢p(x, )]

0.
).cf—- jth Positive examples Negative examples
| Plock @) =00d) [ —g(x,4) + p(x, 5)
—On— nKx1
W
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How can we predict?

For input an input x,
the model predict label is 3

argmax, w' ¢(x,y

_Wl_ _On_
w = Wy d(x,y) =|x
‘Wn‘nle 'On‘nle
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How can we predict?

For input an input x,
the model predict label is 3

argmax, w' ¢(x,y

_Wl_ _On_
Wy p(x,y) =] x
Wnnkxt 0

w

¢ (x,3)

¢ (x,2)
9 be

nkKx1

This is equivalent to

T
drgmaxyefq 2 .k} Wy X

UCLA enGINEERING
Computer Science
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Constraint Classification

% Goal: wlo(x, i) —¢(x,j)] =0 V)

“* Training:
**» For each example (x,i)
< Update model if w![¢(x,i) — ¢p(x,j)] <0,V j

Transform Examples

@)
2>1 /” —
2>3 ° <4mx .:
2>4 o

(2>4 2>1

® @«

© e —
C X )

OXO) ®
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A Perceptron-style Algorithm

Given a training set D = {(x,y)}
Initializew « 0 € R"
For epoch 1...T:
For (x,y) in D:
For y' #vy
if whe(x,y) —¢(x,y)] <0
wew+n[ox,y) —od(x,y)]

Return w ‘ How to interpret this update rule?

This needs |D|XK updates,
do we need all of them?

Prediction:  argmax, w'¢(x,y)
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An alternative training algorithm

< Goal: wlo(x,i) —¢(x,j)] =0 Vj

>wle(x,i) — mgx:ngb(x, )] =0
j#i

> wlp(x,i) — max wlp(x,i)] =0

 Training:
**» For each example (x,i)
“* Find the prediction of the current model:
y = argmax; w' ¢(x,))
< Update model if w’ [¢(x,i) — ¢ (x, )] <0,V
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A Perceptron-style Algorithm

Given a training set D = {(x,y)}
Initializew < 0 € R"
For epoch 1...T:
For (x,y) in D:
y = argmaxy, w'¢(x,y")
if wip(,y) — ¢ 3] <0
wew+n[opxy) — o(x,Y)]
Return w ‘ How to interpret this update rule?

Prediction:  argmax, w'¢(x,y)
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A Perceptron-style Algorithm

Given a training set D = {(x,y)}

Initializew « 0 € RE —
There are only two situations:

For epoch 1..T: 1.9 =y ¢(x,y) — d(x,9) =0
For (x,y) in D: 2. wiodp(x,v) —dp(x,9)] <0

y = argmaxy, WTc,b(x: ) -
T IT WGyt <0
wew+tn|plx,y) —¢lx, )]
Return w ‘ How to interpret this update rule?

Prediction:  argmax, w'¢(x,y)
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A Perceptron-style Algorithm

Given a training set D = {(x,y)}
Initializew « 0 € R"
For epoch 1...T:
For (x,y) in D:
y = argmaxy, w'¢(x,y")
wew+n[olx,y) — ¢(x, )]
Return w

‘ How to interpret this update rule?

Prediction:  argmax, w'¢(x,y)
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Consider

multiclass margin

Multiclass Margin

In terms of Kesler

construction

min w7 [¢(x,y) — d(x,y’)]

M Blue
Score for B Red
a label y'#£y
Green
M Black

Labels

CS6501 Lecture 3
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has the highest score
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Marginal constraint classifier

“* Goal: for every (x,y) in the training data set

min w'[p(x,y) — ¢p(x,¥)] = &
Yy Fy

> wlep(x,y) —maxw!o(x,y) =6
yEy!

> wlop(x, i) — [g}rﬁ]}f wle(x,j)+6]=0

Constraints violated = need an update

/ Let’s define:

M Blue

Score for B Red 5 lfy #: y,
a label Green A( ) ’) — { . !
M Black y y O lf y N y
Check if
Labels y = a‘rgmaxy/WTq')(x, y’) + A(y; y’)
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A Perceptron-style Algorithm

Given a training set D ={(x,y)}
Initializew « 0 € R" s v
For epoch 1..T: olom o
For (x,y) in D:
y = argmaxy, w' ¢(x,y") + AW, Y)
wew+nlodlxy) —éd(x,P)]
Return w

IIIIII

‘ How to interpret this update rule? ‘

Prediction:  argmax, w'¢(x,y)
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Remarks

“» This approach can be generalized to train a
ranker; in fact, any output structure
“* We have preference over label assignments
% E.g., rank search results, rank movies / products

oS Ll T CS6501 Lecture 3 49




A peek of a generalized Perceptron model

Given a trailning set D = {(x,
° ° ° g n {( Z)}\
Initializew < 0 €R™  fstryctured output |

For epoch 1...T: —
For (x,y) in Z):‘Structural prediction/Inference ‘

y = argmaxy, w'¢(x, y’ﬁ‘A(y, Y’)\
W < W+77 [gb(X,Y) _ ¢(X,)7)]

Return w T

‘Model update ‘

‘Structural loss ‘

Prediction:  argmax, w'¢(x,y)
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Recap: A Perceptron-style Algorithm

Given a training set D = {(x,y)}
Initializew « 0 € R"
For epoch 1..T:
For (x,y) in D:

For y' +vy
if wyx <wy,x  make a mistake
Wy, < Wy, + X promote y
Wy, < wy, —nx  demote y’
Return w

. . . T
Prediction:  argmax, w, x
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Recap: Kesler construction

Assume we have a multi-class problem with K class and n features.

wix>w x Vi wlho(x, i) >wlo(x,j) Vj
“* models: Wy - 0,
W1, Wo, ... Wk, : : 9Zcinyt’: bIo::]k;
wy € R" w = [Wy d(x,y)=|x qLﬁ
“ Input: W O.
W, 0,
x € R™ nkx1 nKx1

w' d(x,y) =wl x

oS Ll T CS6501 Lecture 3 5




Geometric inte rp retatiOn # features = n; # classes = K

In RY space In RVX space
t w
W ¢(x,3)
@ Wy ’qb(x, 2)
>
Wsg
W3
Wy
argmaxye( 2 k3 Wy X argmaxy, w'¢(x,y)
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Recap: A Perceptron-style Algorithm

Given a training set D = {(x,y)}
Initializew « 0 € R"
For epoch 1...T:
For (x,y) in D:
y = argmaxy, w'¢(x,y")
wew+n[olx,y) — ¢(x, )]
Return w

‘ How to interpret this update rule?

Prediction:  argmax, w'¢(x,y)
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Multi-category to Constraint Classification

«» Multiclass
“ (X,A) = (X, (A>B, A>C, A>D))

< Multilabel
(X, (A B))= (x, ((A>C, A>D, B>C, B>D) )

“ Label Ranking
(X, (5>4>3>2>1)) = (X, ((5>4, 4>3, 3>2, 2>1) )
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Generalized constraint classifiers

% In all cases, we have examples (x,y) with y € S,

% Where S, : partial order over class labels {1,...,k}
“» defines “preference” relation ( > ) for class labeling

% Consequently, the Constraint Classifier is: h: X —> §,
“ h(x) is a partial order

“* h(x) is consistent with y if (i<j) € y = (i<j) €h(x)

Just like in the multiclass we learn one w; € R" for each
label, the same is done for multi-label and ranking. The

weight vectors are updated according with the
requirements fromy € S,

UCLA encGINEERING
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Multi-category to Constraint Classification

Solving structured prediction problems by ranking algorithms

“ Multiclass
“ (X,A) = (x, (A>B, A>C, A>D))
< Multilabel
(X, (A, B))= (x, ((A>C, A>D, B>C, 5>D) )
*+ Label Ranking
(X, (5>4>3>2>1)) = (X, ((5>4, 4>3, 3>2, 2>1) )
y €S, h: X—> S,
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Properties of Construction (Zimak et. al 2002, 2003)

% Can learn any argmax w,.x function (even when i isn’t
linearly separable from the union of the others)
% Can use any algorithm to find linear separation
“* Perceptron Algorithm
“* ultraconservative online algorithm [Crammer, Singer 2001]
“* Winnow Algorithm
“* multiclass winnow [ Masterharm 2000 |
< Defines a multiclass margin by binary margin in RKN
< multiclass SVM [Crammer, Singer 2001]
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This Lecture

+s» Multiclass classification overview

** Reducing multiclass to binary
¢ One-against-all & One-vs-one
¢ Error correcting codes
< Training a single classifier
**» Multiclass Perceptron: Kesler’'s construction

* Multiclass SVMs: Crammer&Singer formulation
*» Multinomial logistic regression
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Recall: Margin for binary classifiers

“* The margin of a hyperplane for a dataset is
the distance between the hyperplane and
the data point nearest to it.

\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \ ++
. \ \ +
- \ \
\ \
A A
\ \
\ \
\ \

++

S
S
~

iVlargin with respect to this hyperplane
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Multi-class SVM

** In a risk minimization framework
“ Goal: D = {(x;, y)}I,

1. wyx; >wy,x;  foralli,y

2. Maximizing the margin

Defined as the score difference between the highest
scoring label and the second one

Multiclass Margin

M Blue
Score for B Red
a label
= Wiype ' X Green
M Black

Labels

%ﬂ CS6501 Lecture 3
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Multiclass Margin

Defined as the score difference between the highest
scoring label and the second one

Multiclass Margin

Score for

a label
— T.
= Wiape X

Labels

%ﬂ CS6501 Lecture 3
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Multiclass SVM (Intuition)

< Binary SVM
“* Maximize margin. Equivalently,

Minimize norm of weights such that the closest
points to the hyperplane have a score 1

< Multiclass SVM
“+ Each label has a different weight vector
(like one-vs-all)
< Maximize multiclass margin. Equivalently,

Minimize total norm of the weights such that the true label
is scored at least 1 more than the second best one
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Multiclass SVM in the separable case

Recall hard binary SVM

1T Size of the weights.

m“lll’l 2 W w Effectively, regularizer

s.t.Vi, yiwlx; >1

. 1 T
min ~ Wi. W
Wi,W2, , WK 2 zk: & k
s.t. ngx — wfx > 1 : V(x;,y:) € D,
k € {1727 7K}7k7éY'i7
V.

\ 4
The score for the true label is higher than the
score for any other label by 1
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Multiclass SVM: General case

Total slack. Effectively,

Size of the weights.
Effectively, regularizer

don’t allow too many
examples to violate the

margin constraint

v(xiayi) ED,
ke {1727 7K}7k¢yw

The score for the true label is higher Slack variables. Not all
than the score for any other label by 1 examples need to

satisfy the margin

constraint.

A 4

Slack variables can
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Multiclass SVM: Genera

Size of the weights.

Effectively, regularizer
i

case

Total slack. Effectively,
don’t allow too many
examples to violate the
margin constraint

. 1 T
min = wiwi +C ;
Wl,w29"'7wK’§ 2 Zk: & k (xg;EDgz
s.t. wz,;x — wix>1- &y V(x;,y:) € D,
i k k6{172’ 7K}’k#y'&)
i gz Z Oa _____ “\ VII’
v y

The score for the true label is higher
than the score for any other label by
1-»

Slack variables. Not all
examples need to
satisfy the margin

constraint.

v

only I:r)\%

Slack variables can

ositive

ENd |l cpotiira
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Recap: An alternative SVM formulation

in ~wT ¥3
min - w w+C )¢

S. t yi(WTXi + b) > 1 — fi; fi >0 Vi
+» Rewrite the constraints:

§>21— yvi(Wrx, +b); & =20 Vi

“* In the optimum, &, = max(0, 1 — y;(w'x; + b))

2 Soft SVM can be rewritten as:

min wTwl+ C[X; max(0, 1 — y;(wTx; + b))

wb 2
\—— Regularization term “— Empirical loss
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Rewrite it as unconstraint problem

IIllIl Zwk wi + C Z &
i (xi,y:i)ED
s.t. W;*',;x —wix>1-¢, V(x;,yi) € D,
ke {1727 ,K},k#yi,
Let’s define:
5 ify+y
Aly,y') = ,

. y') {0 ify=y

min% YeWi wy +C Zi(m,?X(A()’i: k) + wix)— wy X )
w
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Multiclass SVM

“* Generalizes binary SVM algorithm

“ If we have only two classes, this reduces to the
binary (up to scale)

<* Comes with similar generalization guarantees
as the binary SVM

“+* Can be trained using different optimization
methods
“» Stochastic sub-gradient descent can be generalized
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Exercise!

2 Write down SGD for multiclass SVM

» Write down multiclas SVM with Kesler
construction
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This Lecture

+s» Multiclass classification overview

** Reducing multiclass to binary
¢ One-against-all & One-vs-one
¢ Error correcting codes
< Training a single classifier
**» Multiclass Perceptron: Kesler’'s construction

“* Multiclass SVMs: Crammer&Singer formulation
*» Multinomial logistic regression
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Recall: (binary) logistic regression

1
min inW + Cz log(1 + e_Yi(WTXi))
w
i

Assume labels are generated using the following
probability distribution:

1 -
eV ¥ 1
P — 1 y —_ —
(y=1x,w)= - S S
1
Ply=—-1|x,w) =
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(multi-class) log-linear model

0:0 Assumption: Partition function

exp(w; x)
Zyle{l,z,...l{} €xXp (W};rx)

% This is a valid probability assumption. Why?

P(ylx,w) =

“* Another way to write this (with Kesler

construction) is

This often called soft-max

exp(w' ¢(x,y))
Yyreq1,.x EXPWd(x, "))

P(ylx,w) =
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Softmax

< Softmax: let s(y) be the score for output y

here s(y)=w'¢(x,y)  (or wyx) but it can be
computed by other metric.
exp(s(y))
P(y) =
ZylE{l,Z,...K} exp(s(y))

“* We can control the peakedness of the distribution

exp(s(y)/o)
ZylE{l,Z,...K} exp(s(y/o))

P(ylo) =
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Example

S(dog)=.5; s(cat)=1;, s(mouse)=0.3; s(duck)=-0.2
1.2

1
0.8
0.6

04
> I |II 1

Mouse Duck

-0.2
-0.4

M score M softmax M (hard) max (c—0)

“ softmax (6=0.5) ™ softmax (6=2)
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Log linear model

exp(wj x)
Zy/e{Lz,,,_K} exp(wg;,x)

P(ylx,w) =

log P(ylx, w) = log(exp(wlx)) — 108(Z,e(1.2,..x) EXP(WT )

= W;x — log(Zy,e{l,z,...K} exp(w§,x))

~

Linear function Except this term

Note:
p(y) oc exp(6'f(y))
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Maximum log-likelihood estimation

< Training can be done by maximum log-likelihood
estimation i.e. max log P(D|w)
w

D={(x;,y:)}

exp (W;ixi)

g Zy/e{1,2,...K} eXP(Wgrxi)

P(D|w) =TI

logP(D|w) = Zi[W;ixi —log Zyle{l,z K} exp(W;,xl-)]

yuus
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Maximum a posteriori

D={(x;, i)}

P(w|D) x P(w)P(D|w)

Can you use Kesler construction to
rewrite this formulation?

1
max,, —z Yy wywy + C X;[wy x; —log 2yref1,2,..K} eXP(W;'xi)]

or

.1
m\/\}n EZy W;Wy + C Zl[ log Zyle{l,z,...K} exp (Wy’xi) B WJ/ixi]

UCLA enGINEERING
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Comparisons

% Multi-class SVM:
min% YeWi wp +C Zi(mﬁx(A(yi, k) +wix— wy X))
w

% Log-linear model w/ MAP (multi-class)

o1
mv‘}ngzk Wng + CZi[lOnge{l,z K} exp(w,fx,;) o

yuns

% Binary SVM:
min %WTW + C Y, max(0, 1 — y;(w'x;))
w
% Log-linear mode (logistic regression)

min %WTW + CY;log(1+ e"Yi(WTXi))
w
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