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Previous Lecture

v Binary linear classification models
v Perceptron, SVMs, Logistic regression

v Prediction is simple:
v Given an example 𝑥, prediction is 𝑠𝑔𝑛 𝑤&x
v Note that all these linear classifier have the same 

inference rule
v In logistic regression, we can further estimate the 

probability

v Question?
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This Lecture

vMulticlass classification overview
vReducing multiclass to binary 

vOne-against-all & One-vs-one
vError correcting codes

vTraining a single classifier 
vMulticlass Perceptron: Kesler’s construction
vMulticlass SVMs: Crammer&Singer formulation
vMultinomial logistic regression
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What is multiclass

v Output ∈ 1,2,3, …𝐾
v In some cases, output space can be very large 

(i.e., K is very large)
v Each input belongs to exactly one class

(c.f. in multilabel, input belongs to many classes)
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Multi-class Applications in NLP?
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Two key ideas to solve multiclass

vReducing multiclass to binary 
vDecompose the multiclass prediction into 

multiple binary decisions
vMake final decision based on multiple binary 

classifiers

vTraining a single classifier 
vMinimize the empirical risk
vConsider all classes simultaneously 
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Reduction v.s. single classifier

vReduction
vFuture-proof: binary classification improved so 

does muti-class
vEasy to implement

vSingle classifier
vGlobal optimization: directly minimize the 

empirical loss; easier for joint prediction
v Easy to add constraints and domain knowledge
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A General Formula

𝑦0 = argmax𝒚∈𝒴 𝑓(𝒚;𝒘, 𝒙)

v Inference/Test: given 𝒘, 𝒙, solve argmax
v Learning/Training: find a good 𝒘
vToday: 𝒙 ∈ ℝ𝒏,𝒴 = {1,2, …𝐾} (multiclass)
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input

output space

model parameters 



This Lecture

vMulticlass classification overview
vReducing multiclass to binary 

vOne-against-all & One-vs-one
vError correcting codes

vTraining a single classifier 
vMulticlass Perceptron: Kesler’s construction
vMulticlass SVMs: Crammer&Singer formulation
vMultinomial logistic regression
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One against all strategy
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One against All learning

v Multiclass classifier
vFunction   f : Rn à {1,2,3,...,k}

v Decompose into binary problems
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One-again-All learning algorithm

v Learning: Given a dataset 𝐷 = 𝑥C, 𝑦C
𝑥C ∈ 𝑅E, 𝑦C ∈ 1,2,3, …𝐾

v Decompose into K binary classification tasks
v Learn  K models: 𝑤F,𝑤G, 𝑤H, …𝑤I
vFor class k, construct a binary classification 

task as: 
v Positive examples: Elements of D with label k 
v Negative examples: All other elements of D

vThe binary classification can be solved by any 
algorithm we have seen
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One against All learning

v Multiclass classifier
vFunction   f : Rn à {1,2,3,...,k}

v Decompose into binary problems

𝑤JKLMN& 	𝑥 > 0 𝑤JKRS& 	𝑥 > 0 𝑤TUSSE& 	𝑥 > 0

Ideal	case:	only	the	correct	label	will	have	a	positive	score
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One-again-All Inference

v Learning: Given a dataset 𝐷 = 𝑥C, 𝑦C
𝑥C ∈ 𝑅E, 𝑦C ∈ 1,2,3, …𝐾

v Decompose into K binary classification tasks
v Learn  K models: 𝑤F,𝑤G, 𝑤H, …𝑤I

v Inference: “Winner takes all”
v 𝑦0 = argmaxV∈{F,G,…I}	𝑤V&	𝑥

v An instance of the general form
𝑦0 = argmax𝒚∈𝒴 𝑓(𝒚;𝒘, 𝒙)
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For	example:				y = argmax	(𝑤JKLMN& 	𝑥	, 		𝑤JKRS& 	𝑥, 𝑤TUSSE& 	𝑥)

𝑤 = {𝑤F, 𝑤G, …𝑤I},	𝑓 𝒚;𝒘, 𝒙 = 𝒘V
&	𝑥



One-again-All analysis

v Not always possible to learn 
v Assumption: each class individually separable from 

all the others

v No theoretical justification 
vNeed to make sure the range of all classifiers is 

the same – we are comparing scores produced 
by K classifiers trained independently.

v Easy to implement; work well in practice
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One v.s. One (All against All) strategy
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v Multiclass classifier
vFunction   f : Rn à {1,2,3,...,k}

v Decompose into binary problems

Training

One v.s. One learning

Test
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One-v.s-One learning algorithm

v Learning: Given a dataset 𝐷 = 𝑥C, 𝑦C
𝑥C ∈ 𝑅E, 𝑦C ∈ 1,2,3, …𝐾

v Decompose into C(K,2) binary classification tasks
v Learn C(K,2) models: 𝑤F,𝑤G, 𝑤H, …𝑤I∗(IYF)/G
vFor each class pair (i,j), construct a binary 

classification task as: 
v Positive examples: Elements of D with label i
v Negative examples Elements of D with label j
v The binary classification can be solved by any 

algorithm we have seen
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One-v.s-One Inference algorithm

v Decision Options: 
vMore complex; each label gets k-1 votes
vOutput of binary classifier may not cohere. 
vMajority: classify example x to take label i

if i wins on x more often than j (j=1,…k) 
vA tournament: start with n/2 pairs; continue with 

winners
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Classifying with One-vs-one

Tournament

1	red,	2	yellow,	2	green
è ?

Majority	Vote

All are post-learning and might cause weird stuff
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One-v.s.-one Assumption

vEvery pair of classes is separable
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21

It	is	possible	to	
separate	all	k	
classes	with	the	
O(k2)	classifiers

Decision 
Regions



Comparisons

v One against all
v O(K) weight vectors to train and store
v Training set of the binary classifiers may unbalanced
v Less expressive; make a strong assumption

v One v.s. One (All v.s. All)
v O(𝐾G) weight vectors to train and store
v Size of training set for a pair of labels could be small 
⇒ overfitting of the binary classifiers

v Need large space to store model 
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Problems with Decompositions

v Learning optimizes over local metrics
vDoes not guarantee good global performance
vWe don’t care about the performance of the 

local classifiers
v Poor decomposition Þ poor performance

vDifficult local problems
v Irrelevant local problems

v Efficiency: e.g., All vs. All vs. One vs. All
v Not clear how to generalize multi-class to 

problems with a very large # of output
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Still an ongoing research direction

Key questions:
v How to deal with large number of classes
v How to select “right samples” to train binary classifiers

v Error-correcting tournaments
[Beygelzimer, Langford, Ravikumar 09]

v Logarithmic Time One-Against-Some 
[Daume, Karampatziakis, Langford, Mineiro 16]

v Label embedding trees for large multi-class tasks.
[Bengio, Weston, Grangier 10]

v …
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Decomposition methods: Summary

vGeneral Ideas:
v Decompose the multiclass problem into many 

binary problems
v Prediction depends on the decomposition

v Constructs the multiclass label from the output of 
the binary classifiers

v Learning optimizes local correctness
v Each binary classifier don’t need to be globally 

correct and isn’t aware of the prediction procedure
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This Lecture

vMulticlass classification overview
vReducing multiclass to binary 

vOne-against-all & One-vs-one
vError correcting codes

vTraining a single classifier 
vMulticlass Perceptron: Kesler’s construction
vMulticlass SVMs: Crammer&Singer formulation
vMultinomial logistic regression
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Revisit One-again-All learning algorithm

v Learning: Given a dataset 𝐷 = 𝑥C, 𝑦C
𝑥C ∈ 𝑅E, 𝑦C ∈ 1,2,3, …𝐾

v Decompose into K binary classification tasks
v Learn  K models: 𝑤F,𝑤G, 𝑤H, …𝑤I
v 𝑤N:	separate class 𝑘 from others

v Prediction
𝑦0 = argmaxV∈{F,G,…I}	𝑤V&	𝑥
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Observation

v At training time, we require 𝑤C&𝑥	to be positive for 
examples of class 𝑖.

v Really, all we need is for 𝑤C&𝑥 to be more than all 
others ⇒ this is a weaker requirement
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For	examples	with	label	𝑖,	we	need	
𝑤C&𝑥 > 𝑤_&𝑥 for	all	𝑗



Perceptron-style algorithm

vFor each training example 𝑥, 𝑦
v If for some y’, 𝑤V&𝑥 ≤ 𝑤Vb& 𝑥 mistake!

v 𝑤V ← 𝑤V + 𝜂𝑥	 update to promote y
v 𝑤Vb ← 𝑤Vb − 𝜂𝑥 update to demote y’
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For	examples	with	label	𝑖,	we	need	
𝑤C&𝑥 > 𝑤_&𝑥 for	all	𝑗

Why	add	𝜂𝑥 to	𝑤V	promote	label	𝑦:
Before	update		s y =	< 𝑤ViKj, 𝑥 >
After	update					s y =< 𝑤VESk, 𝑥 >=< 𝑤ViKj +𝜂𝑥, 𝑥 >

=	< 𝑤ViKj, 𝑥 > +𝜂 < 𝑥, 𝑥 >
Note!		< 𝑥	, 𝑥 >	= 𝑥& 𝑥 > 0	



A Perceptron-style Algorithm

Prediction: argmaxq		𝑤V&𝑥
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Initialize𝒘 ← 𝟎 ∈ ℝE
For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:
For 𝑦b ≠ 𝑦
if			𝑤V&𝑥 < 𝑤Vb& 𝑥 make a  mistake
𝑤V ← 𝑤V + 𝜂𝑥										promote y
𝑤Vb ← 𝑤Vb − 𝜂𝑥 demote y’

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

How	to	analyze	this	algorithm
and	simplify	the	update	rules?



Linear Separability with multiple classes

v Let’s rewrite the equation
𝑤C&𝑥 > 𝑤_&𝑥 for all 𝑗

v Instead of having 𝑤F,𝑤G, 𝑤H, …𝑤I, we want to 
represent the model using a single vector 𝑤

𝑤& 							> 	𝑤& 		       for all j

vHow?  
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Change	the	input	representation
Let’s	define	𝜙(𝑥, 𝑦),	such	that
𝑤&𝜙 𝑥, 𝑖 > 𝑤&𝜙 𝑥, 𝑗 			∀𝑗

? ?

multiple	models	v.s.	multiple	data	points



Kesler construction
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𝑤C&	𝑥 > 𝑤_&	𝑥			∀	j

vmodels:
𝑤F,𝑤G, …𝑤I, 𝑤N ∈ 𝑅E

v Input:
𝑥 ∈ 𝑅E

𝑤&𝜙 𝑥, 𝑖 > 𝑤&𝜙 𝑥, 𝑗 			∀	𝑗

Assume	we	have	a	multi-class	problem	with	K	class	and	n	features.	



Kesler construction
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𝑤C&	𝑥 > 𝑤_&	𝑥			∀	j

vmodels:
𝑤F,𝑤G, …𝑤I, 𝑤N ∈ 𝑅E

v Input:
𝑥 ∈ 𝑅E

𝑤&𝜙 𝑥, 𝑖 > 𝑤&𝜙 𝑥, 𝑗 			∀	𝑗

vOnly one model:
𝑤 ∈ 𝑅E×I

Assume	we	have	a	multi-class	problem	with	K	class	and	n	features.	



Kesler construction
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𝑤C&	𝑥 > 𝑤_&	𝑥			∀	𝑗

vmodels:
𝑤F,𝑤G, …𝑤I, 𝑤N ∈ 𝑅E

v Input:
𝑥 ∈ 𝑅E

𝑤&𝜙 𝑥, 𝑖 > 𝑤&𝜙 𝑥, 𝑗 			∀	𝑗

v Only one model:
𝑤 ∈ 𝑅EI

v Define 𝜙 𝑥, 𝑦 for label y
being associated to input x

𝜙 𝑥, 𝑦 =

0E
⋮
𝑥
⋮
0E EI×F

Assume	we	have	a	multi-class	problem	with	K	class	and	n	features.	

𝑥	in	𝑦}~ block;
Zeros elsewhere	



Kesler construction
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𝑤C&	𝑥 > 𝑤C&	𝑥			∀	i
v models:

𝑤F,𝑤G,…𝑤I,		
𝑤N ∈ 𝑅E

v Input:
𝑥 ∈ 𝑅E

𝑤&𝜙 𝑥, 𝑖 > 𝑤&𝜙 𝑥, 𝑗 			∀	𝑗

𝑤 =

𝑤F
⋮
𝑤V
⋮
𝑤E EI×F

	𝜙 𝑥, 𝑦 =

0E
⋮
𝑥
⋮
0E EI×F

𝑤&𝜙 𝑥, 𝑦 = 𝑤V&	𝑥

𝑥	in	𝑦}~ block;
Zeros elsewhere	

Assume	we	have	a	multi-class	problem	with	K	class	and	n	features.	



Kesler construction
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𝑤&𝜙 𝑥, 𝑖 > 𝑤&𝜙 𝑥, 𝑗 			∀	𝑗
⇒ 𝑤& 𝜙 𝑥, 𝑖 − 𝜙 𝑥, 𝑗 > 0			∀𝑗

𝑤 =

𝑤F
⋮
𝑤V
⋮
𝑤E EI×F

[𝜙 𝑥, 𝑖 − 𝜙 𝑥, 𝑗 ] =

0E
⋮
𝑥
⋮
−𝑥
⋮
0E EI×F

𝑥	in	𝑖}~ block;

Assume	we	have	a	multi-class	problem	with	K	class	and	n	features.	

−𝑥	in	𝑗}~ block;

binary	classification	problem



Linear Separability with multiple classes
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What	we	want
𝑤&𝜙 𝑥, 𝑖 > 𝑤&𝜙 𝑥, 𝑗 			∀	𝑗
⇒ 𝑤& 𝜙 𝑥, 𝑖 − 𝜙 𝑥, 𝑗 > 0			∀𝑗

For	all	example	(x,	y)	with	all	other	labels	y’	in	
dataset,	𝑤 in	nK dimension	should	linearly	separate		
𝜙 𝑥, 𝑖 − 𝜙 𝑥, 𝑗 and	−[𝜙 𝑥, 𝑖 − 𝜙 𝑥, 𝑗 ]



How can we predict?
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argmaxq		𝑤&𝜙(𝑥, 𝑦)

𝑤 =

𝑤F
⋮
𝑤V
⋮
𝑤E EI×F

	𝜙 𝑥, 𝑦 =

0E
⋮
𝑥
⋮
0E EI×F

𝑤

𝜙(𝑥, 3)

For	input	an	input	x,
the	model	predict	label	is	3

𝜙(𝑥, 2)

𝜙(𝑥, 1)

𝜙(𝑥, 4)

𝜙(𝑥, 5)



How can we predict?
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argmaxq		𝑤&𝜙(𝑥, 𝑦)

𝑤 =

𝑤F
⋮
𝑤V
⋮
𝑤E EI×F

	𝜙 𝑥, 𝑦 =

0E
⋮
𝑥
⋮
0E EI×F

𝑤
𝜙(𝑥, 3)

For	input	an	input	x,
the	model	predict	label	is	3

𝜙(𝑥, 2)

𝜙(𝑥, 1)

𝜙(𝑥, 4)

𝜙(𝑥, 5)

This	is	equivalent	to
argmaxV∈{F,G,…I}	𝑤V&	𝑥



Constraint Classification

vGoal:
vTraining:

vFor each example 𝑥, 𝑖
v Update model if 𝑤& 𝜙 𝑥, 𝑖 − 𝜙 𝑥, 𝑗 < 0	, ∀	𝑗
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𝑤 𝜙 𝑥, 𝑖 − 𝜙 𝑥, 𝑗 ≥ 0			∀𝑗

-xx

Transform Examples

2>1
2>3
2>4

2>1

2>3

2>4



A Perceptron-style Algorithm

Prediction:     argmaxq		𝑤&𝜙(𝑥, 𝑦)
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Initialize𝒘 ← 𝟎 ∈ ℝE

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:
For 𝑦b ≠ 𝑦
if			𝑤& 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦′ < 0
				𝒘 ←𝒘+𝜂	 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦′

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

How	to	interpret	this	update	rule?

This	needs	 𝐷 ×𝐾 updates,	
do	we	need	all	of	them?



An alternative training algorithm

vGoal:

vTraining:
vFor each example 𝑥, 𝑖

v Find the prediction of the current model:
𝑦0 = 	argmax�		𝑤&𝜙(𝑥, 𝑗)

v Update model if 𝑤& 𝜙 𝑥, 𝑖 − 𝜙 𝑥, 𝑦0 < 0	, ∀	𝑦′
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𝑤 𝜙 𝑥, 𝑖 − 𝜙 𝑥, 𝑗 ≥ 0			∀𝑗
⇒ 𝑤&𝜙 𝑥, 𝑖 		− max

_�C
𝑤&𝜙 𝑥, 𝑖 ≥ 0	

⇒ 𝑤&𝜙 𝑥, 𝑖 		− max
_

𝑤&𝜙 𝑥, 𝑖 ≥ 0	



A Perceptron-style Algorithm

Prediction:     argmaxq		𝑤&𝜙(𝑥, 𝑦)
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Initialize𝒘 ← 𝟎 ∈ ℝE

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

𝑦̂ = argmaxqb		𝑤&𝜙(𝑥, 𝑦′) 
if			𝑤& 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦0 < 0

				𝒘←𝒘+𝜂	 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦�
Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

How	to	interpret	this	update	rule?



A Perceptron-style Algorithm

Prediction:     argmaxq		𝑤&𝜙(𝑥, 𝑦)
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Initialize𝒘 ← 𝟎 ∈ ℝE

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

𝑦̂ = argmaxqb		𝑤&𝜙(𝑥, 𝑦′) 
if			𝑤& 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦0 < 0
				𝒘 ←𝒘+𝜂	 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦0

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

How	to	interpret	this	update	rule?

There	are	only	two	situations:
1.	𝑦0 = 𝑦:		𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦0 =0
2.	𝑤& 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦0 < 0



A Perceptron-style Algorithm

Prediction:     argmaxq		𝑤&𝜙(𝑥, 𝑦)
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Initialize𝒘 ← 𝟎 ∈ ℝE

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

𝑦̂ = argmaxqb		𝑤&𝜙(𝑥, 𝑦′) 
	𝒘 ←𝒘+𝜂	 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦0

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

How	to	interpret	this	update	rule?



Consider multiclass margin
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Marginal constraint classifier

vGoal: for every (x,y) in the training data set
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min
V��V

𝑤& 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦′ ≥ 𝛿

⇒ 𝑤&𝜙 𝑥, 𝑦 − max
V�Vb

𝑤&𝜙 𝑥, 𝑦′ ≥ 𝛿

⇒ 𝑤&𝜙 𝑥, 𝑖 − [max
V�Vb

𝑤&𝜙 𝑥, 𝑗 + 𝛿] ≥ 0

	𝛿 	𝛿
	𝛿

Constraints		violated	⇒ need		an	update

Let’s	define:	

Δ 𝑦, 𝑦b = � 𝛿					if	𝑦 ≠ 𝑦′
0						𝑖𝑓	𝑦 = 𝑦′	

Check	if	
𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥V�𝑤&𝜙 𝑥, 𝑦′ + Δ(𝑦, 𝑦b)



A Perceptron-style Algorithm

Prediction:     argmaxq		𝑤&𝜙(𝑥, 𝑦)
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Initialize𝒘 ← 𝟎 ∈ ℝE

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

𝑦̂ = argmaxqb		𝑤&𝜙 𝑥, 𝑦′ + Δ(𝑦, y’) 
	𝒘 ←𝒘+𝜂	 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦0

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

How	to	interpret	this	update	rule?

	𝛿 	𝛿
	𝛿



Remarks

v This approach can be generalized to train a 
ranker; in fact, any output structure
v We have preference over label assignments
v E.g., rank search results, rank movies / products
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A peek of a generalized Perceptron model 

Prediction:     argmaxq		𝑤&𝜙(𝑥, 𝑦)
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Initialize𝒘 ← 𝟎 ∈ ℝE

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

𝑦̂ = argmaxqb		𝑤&𝜙(𝑥, 𝑦′) + Δ(𝑦, y’) 
	𝒘 ←𝒘+𝜂	 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦0

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

Structural	prediction/Inference	

Model	update

Structured	output

Structural	loss



Recap: A Perceptron-style Algorithm

Prediction:     argmaxq		𝑤V&𝑥
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Initialize𝒘 ← 𝟎 ∈ ℝE
For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:
For 𝑦b ≠ 𝑦
if			𝑤V&𝑥 < 𝑤Vb& 𝑥 make a  mistake
𝑤V ← 𝑤V + 𝜂𝑥										promote y
𝑤Vb ← 𝑤Vb − 𝜂𝑥 demote y’

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }



Recap: Kesler construction
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𝑤C&	𝑥 > 𝑤C&	𝑥			∀	i
v models:

𝑤F,𝑤G,…𝑤I,		
𝑤N ∈ 𝑅E

v Input:
𝑥 ∈ 𝑅E

𝑤&𝜙 𝑥, 𝑖 > 𝑤&𝜙 𝑥, 𝑗 			∀	𝑗

𝑤 =

𝑤F
⋮
𝑤V
⋮
𝑤E EI×F

	𝜙 𝑥, 𝑦 =

0E
⋮
𝑥
⋮
0E EI×F

𝑤&𝜙 𝑥, 𝑦 = 𝑤V&	𝑥

𝑥	in	𝑦}~ block;
Zeros elsewhere	

Assume	we	have	a	multi-class	problem	with	K	class	and	n	features.	



Geometric interpretation
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argmaxq		𝑤&𝜙(𝑥, 𝑦)

𝑤
𝜙(𝑥, 3)

#	features	=	n;	#	classes	=	K

𝜙(𝑥, 2)

𝜙(𝑥, 1)

𝜙(𝑥, 4)

𝜙(𝑥, 5)

argmaxV∈{F,G,…I}	𝑤V&	𝑥

In 𝑅�I spaceIn 𝑅� space

𝑤G
𝑤F

𝑤H

𝑤 

𝑤¡



Recap: A Perceptron-style Algorithm

Prediction:     argmaxq		𝑤&𝜙(𝑥, 𝑦)
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Initialize𝒘 ← 𝟎 ∈ ℝE

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

𝑦̂ = argmaxqb		𝑤&𝜙(𝑥, 𝑦′) 
	𝒘 ←𝒘+𝜂	 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦0

Return 𝒘

Given a training set 𝒟 = { 𝒙,𝑦 }

How	to	interpret	this	update	rule?



Multi-category to Constraint Classification

v Multiclass
v (x, A)  Þ (x, (A>B, A>C, A>D) )

v Multilabel
v (x, (A, B))Þ (x, ( (A>C, A>D, B>C, B>D) ) 

v Label Ranking
v (x, (5>4>3>2>1))   Þ (x, ( (5>4, 4>3, 3>2, 2>1) )
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Generalized constraint classifiers

v In all cases, we have examples (x,y)  with  y Î Sk
v Where Sk : partial order over class labels {1,...,k}

v defines “preference” relation ( > ) for class labeling
v Consequently, the Constraint Classifier is:  h: X® Sk

v h(x) is a partial order
v h(x) is consistent with y if (i<j) Î y è (i<j) Îh(x)
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Just	like	in	the	multiclass	we	learn	one	wi Î Rn for	each	
label,	the	same	is	done	for	multi-label	and	ranking.	The	
weight	vectors	are	updated	according	with	the	
requirements	from	y	Î Sk



Multi-category to Constraint Classification

Solving structured prediction problems by ranking algorithms
v Multiclass

v (x, A)  Þ (x, (A>B, A>C, A>D) )
v Multilabel

v (x, (A, B))Þ (x, ( (A>C, A>D, B>C, B>D) ) 
v Label Ranking

v (x, (5>4>3>2>1))   Þ (x, ( (5>4, 4>3, 3>2, 2>1) )
y	Î Sk h:	X® Sk
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Properties of Construction (Zimak et. al 2002, 2003)

v Can learn any argmax wi.x function (even when i isn’t 
linearly separable from the union of the others) 

v Can use any algorithm to find linear separation
v Perceptron Algorithm

v ultraconservative online algorithm [Crammer, Singer 2001]

v Winnow Algorithm
v multiclass winnow [ Masterharm 2000 ] 

v Defines a multiclass margin by binary margin in RKN

v multiclass SVM [Crammer, Singer 2001]
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This Lecture

vMulticlass classification overview
vReducing multiclass to binary 

vOne-against-all & One-vs-one
vError correcting codes

vTraining a single classifier 
vMulticlass Perceptron: Kesler’s construction
vMulticlass SVMs: Crammer&Singer formulation
vMultinomial logistic regression
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Recall: Margin for binary classifiers

vThe margin of a hyperplane for a dataset is 
the distance between the hyperplane and 
the data point nearest to it.

60
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Margin	with	respect	to	this	hyperplane
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Multi-class SVM

v In a risk minimization framework
vGoal: D = x£, y£ C¤F

�

1. 𝑤V¦
& 𝑥C > 𝑤Vb& 𝑥C for all 𝑖, y’

2. Maximizing the margin
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Multiclass Margin
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Multiclass SVM (Intuition)

v Binary SVM
v Maximize margin. Equivalently, 

Minimize norm of weights such that the closest 
points to the hyperplane have a score 1

v Multiclass SVM
v Each label has a different weight vector 

(like one-vs-all)
v Maximize multiclass margin. Equivalently,

Minimize total norm of the weights such that the true label 
is scored at least 1 more than the second best one
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Multiclass SVM in the separable case

64

Recall	hard	binary	SVM

The	score	for	the	true	label	is	higher	than	the	
score	for	any other	label	by	1

Size	of	the	weights.	
Effectively,	regularizer
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Multiclass SVM: General case

65

Size	of	the	weights.	
Effectively,	regularizer

The	score	for	the	true	label	is	higher	
than	the	score	for	any other	label	by	1

Slack	variables.	Not	all	
examples	need	to	
satisfy		the	margin	

constraint.	

Total	slack.	Effectively,	
don’t	allow	too	many	
examples	to	violate	the	

margin	constraint

Slack	variables	can	
only	be	positive
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Multiclass SVM: General case

66

The	score	for	the	true	label	is	higher	
than	the	score	for	any other	label	by	
1	- »i

Size	of	the	weights.	
Effectively,	regularizer

Slack	variables.	Not	all	
examples	need	to	
satisfy		the	margin	

constraint.	

Total	slack.	Effectively,	
don’t	allow	too	many	
examples	to	violate	the	

margin	constraint

Slack	variables	can	
only	be	positive
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Recap: An alternative SVM formulation

min
𝒘,J,𝝃

			F
G
𝒘&𝒘 + 𝐶 ∑ 𝜉C�

C

s. t			y£(𝐰­𝐱£ + 𝑏) ≥ 1 − 𝜉C;	𝜉C ≥ 0						∀𝑖	
vRewrite the constraints:

𝜉C ≥ 1 −	y£(𝐰­𝐱£ + 𝑏);	𝜉C ≥ 0 ∀𝑖	
v In the optimum, 𝜉C = max(0,	 1 −	y£(𝐰­𝐱£ + 𝑏))

vSoft SVM can be rewritten as:
min
𝒘,J

			F
G
𝒘&𝒘 + 𝐶 ∑ max(0,	 1 −	y£(𝐰­𝐱£ + 𝑏))�

C
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Empirical	lossRegularization		term



Rewrite it as unconstraint problem

min
k

F
G
	∑ 𝑤N&�

N 𝑤N + 𝐶	∑ (max
N

Δ 𝑦C, 𝑘 + 𝑤N&𝑥 − 𝑤V¦
& 𝑥	)�

C
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Let’s	define:	

Δ 𝑦, 𝑦b = � 𝛿					if	𝑦 ≠ 𝑦′
0						𝑖𝑓	𝑦 = 𝑦′	



Multiclass SVM

v Generalizes binary SVM algorithm
v If we have only two classes, this reduces to the 

binary (up to scale)

v Comes with similar generalization guarantees 
as the binary SVM

v Can be trained using different optimization 
methods
v Stochastic sub-gradient descent can be generalized 
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Exercise!

v Write down SGD for multiclass SVM

v Write down multiclas SVM with  Kesler
construction
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This Lecture

vMulticlass classification overview
vReducing multiclass to binary 

vOne-against-all & One-vs-one
vError correcting codes

vTraining a single classifier 
vMulticlass Perceptron: Kesler’s construction
vMulticlass SVMs: Crammer&Singer formulation
vMultinomial logistic regression
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Recall: (binary) logistic regression

min
𝒘
			
1
2𝒘

&𝒘 + 𝐶°log( 1 + 𝑒Yq²(𝐰³𝐱²))
�

C

Assume labels are generated using the following 
probability distribution:
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(multi-class) log-linear model

vAssumption:

		𝑃 𝑦 𝑥, 𝑤 =
exp 𝑤V&𝑥

∑ exp	(𝑤Vb& 𝑥)�
Vb∈{F,G,…I}

v This is a valid probability assumption. Why?
v Another way to write this (with Kesler

construction) is

𝑃 𝑦 𝑥,𝑤 =
exp 𝑤&𝜙(𝑥, 𝑦)

∑ exp	(𝑤&𝜙(𝑥, 𝑦′))�
Vb∈{F,G,…I}
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This	often	called	soft-max	

Partition		function



Softmax

v Softmax: let s(y) be the score for output y
here s(y)=𝑤&𝜙(𝑥, 𝑦) (or 𝑤V&𝑥) but it can be 
computed by other metric.

v We can control the peakedness of the distribution
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𝑃(𝑦) =
exp 𝑠(𝑦)

∑ exp	(𝑠(𝑦))�
Vb∈{F,G,…I}

𝑃(𝑦|𝜎) =
exp 𝑠 𝑦 /𝜎

∑ exp	(𝑠(𝑦/𝜎))�
Vb∈{F,G,…I}



Example
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-0.4 

-0.2 

0

0.2

0.4

0.6

0.8

1

1.2

Dog Cat Mouse Duck

S(dog)=.5;				s(cat)=1;				s(mouse)=0.3;				s(duck)=-0.2

score softmax (hard)	max	(𝜎→0)

softmax	(𝜎=0.5) softmax	(𝜎=2) 



Log linear model

𝑃 𝑦 𝑥,𝑤 = ·¸¹ kº»¼
∑ ·¸¹	(kº�» ¼)
�
º�∈{½,¾,…¿}

log 𝑃 𝑦 𝑥,𝑤 = log	(exp 𝑤V&𝑥 ) − log	(∑ exp	(𝑤V�
& 𝑥))�

Vb∈{F,G,…I}

= 𝑤V&𝑥 − log	(∑ exp	(𝑤V�
& 𝑥))�

Vb∈{F,G,…I}

Note:

CS6501 Lecture 3 76

Linear	function Except	this	term	



Maximum log-likelihood estimation

v Training can be done by maximum log-likelihood 
estimation i.e. max

k
	log 𝑃(𝐷 𝑤

D={(𝑥C, 𝑦C)}

𝑃(𝐷 𝑤 = ΠC
·¸¹ kº¦

» ¼¦
∑ ·¸¹	(kº�

» ¼¦)�
º�∈{½,¾,…¿}

log 𝑃(𝐷 𝑤 = ∑ [𝑤V¦
& 𝑥C −�

C log∑ exp	(𝑤V�
& 𝑥C)�

Vb∈{F,G,…I} ]
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Maximum a posteriori

D={(𝑥C, 𝑦C)}

𝑃 𝑤 𝐷 ∝ 𝑃 𝑤 𝑃 𝐷 𝑤

m𝑎𝑥k 	−
F
G ∑ 𝑤V&𝑤V +	�

V 𝐶 ∑ [𝑤V¦
& 𝑥C −�

C log∑ exp	(𝑤V�
& 𝑥C)�

Vb∈{F,G,…I} ]

or

min
k
		FG∑ 𝑤V&𝑤V +	�

V 𝐶 ∑ [�C log∑ exp 𝑤V�
& 𝑥C − 𝑤V¦

& 𝑥C�
Vb∈{F,G,…I} ]  
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Can	you	use	Kesler construction	to	
rewrite	this	formulation?



Comparisons
v Multi-class SVM:

min
k

F
G
	∑ 𝑤N&�

N 𝑤N + 𝐶	 ∑ (max
N
(Δ 𝑦C, 𝑘 + 𝑤N&𝑥 − 𝑤V¦

& 𝑥))�
C

v Log-linear model w/ MAP (multi-class)
min
k

F

G
∑ 𝑤N&𝑤N + 𝐶�
N ∑ [�C log∑ exp 𝑤N&𝑥C − 𝑤V¦

& 𝑥C�
N∈{F,G,…I} ]  

v Binary SVM:

							min
𝒘
			F
G
𝒘&𝒘 + 𝐶 ∑ max(0,	 1 −	y£(𝐰­𝐱£))�

C

v Log-linear mode (logistic regression)

							min
𝒘
			F
G
𝒘&𝒘 + 𝐶 ∑ log( 1 + 𝑒Yq²(𝐰³𝐱²))�

C
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