
Lecture 5:
Representation Learning

Kai-Wei Chang
CS @ UCLA

kw@kwchang.net

Couse webpage: https://uclanlp.github.io/CS269-17/

1ML in NLP

This lecture

vReview: Neural Network
vRecurrent NN
vRepresentation learning in NLP

ML in NLP 2

Neural Network

10Based	on	slide	by	AndrewNg

12Slide	by	AndrewNg

Neural Network (feed forward)

13Based	on	slide	by	T.	Finin,	M.	desJardins,	L	Getoor,	R.Par

Feed-Forward Process

vInput	layer	units	are	features	(in	NLP,	e.g.,	words)
v Usually, one-hot vector or word embedding

vWorking	forward	through	the	network,	the	input		
function	is	applied	to	compute	the	input		value
vE.g.,	weighted	sum	of	the	input

vThe	activation	function	transforms	this	input		
function	into	a	final value
vTypically	a	nonlinear	function	(e.g,	sigmoid)

14Slide	by	AndrewNg

15Based	on	slide	by	AndrewNg

Vector Representation

Can extend to multi-class

Pedestrian Car Motorcycle Truck

17Slide	by	AndrewNg

Why staged predictions?

21Based	on	slide	and	example	by	AndrewNg

Representing Boolean Functions

22

Combining Representations to Create
Non-Linear Functions

23Based	on	example	by	AndrewNg

Layering Representations
x1 ... x20
x21 ... x40
x41 ... x60

x381 ... x400

20 × 20 pixel images
d = 400 10 classes

Each image is “unrolled” into a vector x of pixel intensities

...

2
4

Layering Representations

xd

2
5

“0”

“1”

“9”

Input Layer

x1

x2

x3

x4

x5

Output Layer
Hidden Layer

Visualization of Hidden Layer

This lecture

vReview: Neural Network
vLearning NN

vRecursive and Recurrent NN
vRepresentation learning in NLP

ML in NLP 14

Stochastic Sub-gradient Descent

ML in NLP 15

1.
2.
3.
4.
5.

Initialize𝒘 ← 𝟎 ∈ ℝ&

For epoch 1…𝑇:
For (𝒙,𝑦) in 𝒟:

Update 𝑤 ←𝑤−𝜂	𝛻	𝑓(𝜃)
Return 𝜃

Given a training set 𝒟 = { 𝒙,𝑦 }

Recap: Logistic regression

min
𝜽
			
𝜆
2𝑛 𝜽

A𝜽 +
1
𝑛Clog(1 + 𝑒HIJ(𝜽K𝐱J))

�

N

	

Let hP(𝑥N) = 1/(1 + 𝑒HPSTU) (probability 𝑦 = 1 given 𝑥N)

V
W&
𝜽A𝜽 + X

&
∑ y[log(ℎP(𝑥N)) + (1 − 𝑦N) (log(1 −ℎP(𝑥N))�
N 	

ML in NLP 16

Cost Function

3
2Based	on	slide	by	AndrewNg

𝑓 𝜃 = 𝐽 𝜃 +𝑔 𝜃 , 			𝑔 𝜃 = 𝛾	𝜃A𝜃

Optimizing the Neural Network

3
3Based	on	slide	by	AndrewNg

Forward Propagation

3
4Based	on	slide	by	AndrewNg

36Based	on	slide	by	AndrewNg

Backpropagation: Compute Gradient

This lecture

vReview: Neural Network
vRecurrent NN
vRepresentation learning in NLP

ML in NLP 21

How to deal with input with variant size?

vUse same parameters

Advanced ML: Inference 22

<S>										Today											is													… day		

Today									is															a													… </S>

Recurrent Neural Networks

Recurrent Neural Networks

Unroll RNNs

U

V

RNN training

vBack-propagation over time

Vanishing Gradients

vFor the traditional activation functions,
each gradient term has the value in range
(-1, 1).

vMultiplying n of these small numbers to
compute gradients

vThe longer the sequence is, the more
severe the problems are.

RNNs characteristics

vModel hidden states (input) dependencies
vErrors “back propagation over time”
vFeature learning methods
vVanishing gradient problem:

cannot model long-distant dependencies of
the hidden states.

Long-Short Term Memory Networks
(LSTMs)

Use gates to control the information to
be	added	from	the	input,	forgot	from	the
previous memories, and outputted.
σ and f are sigmoid and tanh function
respectively,	to	map	the	value	to	[-1,	1]

Another Visualization

Figure	credit:	Christopher	Olah

Capable of modeling long-distant dependencies between states.

Bidirectional LSTMs

How to deal with sequence output?

v Idea 1: combine DL with CRF

v Idea 2: introduce structure in DL

ML in NLP 32

LSTMs for Sequential Tagging

yt

Sophisticated model of input + local predictions.

yt =Wht

yt =Wht + b

min l(yt, y
^

t)
t
∑

Recall CRFs for Sequential Tagging

Arbitrary features	on	the	input	side
Markov assumption	on	the	output	side

LSTMs for Sequential Tagging

vCompletely ignored the interdependencies
of the outputs

vWill this work? Yes.
v Liang et. al. (2008), Structure Compilation:

Trading Structure for Features

v Is this the best model? Not necessarily.

Combining CRFs with LSTMs

Traditional CRFs v.s.
LSTM-CRFs

vTraditional CRFs:

v LSTM-CRFs:

P(Y | X;θ) = 1

exp(θ f (yi, yi−1, x1:n))
n=1

n

∏
Y
∑

exp(θ f (yi, yi−1, x1:n))
n=1

n

∏

P(Y | X;Θ) = 1

exp(λ f (yi, yi−1,LSTM (x1:n)))
n=1

n

∏
Y
∑

exp(λ f (yi, yi−1,LSTM (x1:n)))
n=1

n

∏

Θ = {λ,Ω} where	Ω is	LSTM	parameters

Combining Two Benefits

● Directly model output dependencies by CRFs.

● Powerful automatic feature learning using biLSTMs.

● Jointly training all the parameters to “share the
modeling responsibilities”

Transfer Learning with LSTM-CRFs

vNeural networks as feature learner
vShare the feature learner for different tasks
v Jointly train the feature learners so that it

learns the common features.
vUse different CRFs for different tasks to

encode task-specific information
vGoing forward, one can imagine using other

graphical models besides linear chain CRFs.

Transfer Learning CWS + NER

Shared

Joint Training

vSimply linearly combine two objectives.

vAlternative updates for each module’s
parameters.

How to deal with sequence output?

v Idea 1: combine DL with CRF

v Idea 2: introduce structure in DL

ML in NLP 42

Advanced ML: Inference 43

Advanced ML: Inference 44

Advanced ML: Inference 45

Advanced ML: Inference 46

Advanced ML: Inference 47

