Lecture 5:
Representation Learning

Kai-Wei Chang
CS @ UCLA
kw@kwchang.net

Couse webpage: https://uclanlp.github.io/CS269-17/

UCLA encGINEERING

ML in NLP

Computer Science

This lecture

+» Review: Neural Network
» Recurrent NN

“* Representation learning in NLP

UCLA encGINEERING

ML in NLP

Computer Science

Neural Network

“bias unit”

10

Slide by Andre¥m

Neural Network (feed forward)

bias units ! 330\\ ag A

E— he (X)
Layer 1 Layer 2 Layer 3
(Input Layer) (Hidden Layer) (Output Layer)

UCLA enGINEERING

Computer Science 12

Feed-Forward Process

*** Input layer units are features (in NLP, e.g., words)

** Usually, one-hot vector or word embedding

*** Working forward through the network, the input
function is applied to compute the input value

** E.g., weighted sum of the input

¢ The activation function transforms this input
function into a final value

*** Typically a nonlinear function (e.g, sigmoid)

UCLA encGINEERING

. Computer Science
slide iouaae —

13

a9 = “activation” of unit 7 in layer j

2

OV = weight matrix controlling function

e laverz o Levers mapping from layer j to layer j + 1
a]:ﬂ m+@wm+@§@+onn)
az = g(04)xo + OV, + 0 2y + 0 24)
al?) = g(0} l()+()]ll+()212+()313)
ho(x) = aﬁ” = q(()go aé + ()” gt ()) 4 ()(s))

If network has s; units in layer j and s, ; units in layer j+1,
then ©U) has dimension s, ; x (s;+1)

@(1) c]R3><4 @(2) c R1X4

14

Vector Representation
0?) <@<1>x0+@11 x1+@§§)x2+@§§’x3)
o —

o (+”)
(")

o) = (@g(ﬁxo + @glgxl + 045, + @§3>x3) =g (")

he(x) =g

0(1 Jag? + O(Z) "+ Olz '+ O(lzz)az) =49 (253))

‘:> Feed-Forward Steps:
z(?) — (M
, (2) — 4(7(2)
o — > he (X) a g(z)

has Add a{? =
) ,(3) _ @(2>a<2>

(2)
© he(x) = a® = g(z®)

15

Based on slide il

Can extend to multi-class

We want:

he(x) ~

when pede-stri:;\n

| Computer Sci
Siide by Ancre R

OO = O

when car

when motorcycle

0

0

he(x) ~ 0
L. 1 _

when truck

17

Why staged predictions?

Logistic / Sig_moid Function

Simple example: AND ()
Z
T1,T9 € {0, 1} g
y = a1 AND @9 o5
| o) | |
-6 -4 =2 0 2 4 6
T T, hg(x)
0 0 9(-30)=0
0 1 ¢(-10)= 0
1 0 ¢(-10)= 0
1 1 ¢(10)= 1

21

UCLA enGINEERING

Computer Science

—)hg (X)

22

Combining Representations to Create
Non-Linear Functions

(NOT z,) AND (NOT z,)

Layering Representations

2 LS5 §7 4/ P Xo1.er X
73324845 X41 -+ X60
6 3 g 32 é

IT>/bb6s524Y

Cg 7S T 95Y °
b 6503 EG °
5/¥97 8736 °
el ATl

rA T Al A A el

939957229 ¢E8 | X381 --- X400
20 x 20 pixel images

d=400 10 classes

UCLA enGINEERING

Computer Science 2

Layering Representations

72965 %744/ @ X
073324845 1
Lesz29a353726
| 3>/ b6s524Y X9
Negl7538 5 Y “0”
Y bLbs0A/S3EG X
F&5 /978736 3
A0 2 23 se “1”
(72525132700 X4
71939952298
X5
66999
Output Layer
Hidden Layer

This lecture

+» Review: Neural Network
s Learning NN

“* Recursive and Recurrent NN
** Representation learning in NLP

UCLA encGINEERING

ML in NLP

Computer Science

14

Stochastic Sub-gradient Descent

Given a training set D = {(x,y)}
Initializew « 0 € R"
For epoch 1...T:
For (x,y) in D:
Update w «w —nV f(0)
Return 6

UCLA enGINEERING

ML in NLP

Computer Science

15

Recap: Logistic regression

A 1 T
in —@7T — —yi(0"xj)
min Zne 0+n E log(1+e)
l

Let hy(x;) = 1/(1 + e~ %) (probability y = 1 given x;)

2070 +=3, y; log(hg(x,)) + (1 — y) (log(1 — hg (x;))

UCLA encGINEERING

ML in NLP 16

Computer Science

Cost Function

f(8) =J(6) + 9(6), g(6) =y0"6
Logistic Regression*

J(0) = ——Z[yz log he(xi) + (1 — y;)log (1 — he(xi))] + —292

Neural Network:
he € RE (he(x)); = i!"output

7©)=--

n K
D> vilog(he(x:))k + (1 — yux) log (1 — (h@(xi))k>]

1=1 k=1

+ — Z Z Z oW ’ K class: true, predicted
2n - Je not k" class: true, predicted

Based on sid e ey ey ——

Optimizing the Neural Network

n K
J(©) = - % [Z >~ yir log(he (x))i + (1 — yux) log (1 - (h@(xi))k)]
i=1 k=1
A L—} Sl—i sl\ . o
+ m >J >J>J (@jz’>

I=1 i=1 j=1

J(©) is not convex, so GD on a

| | | net yields a local optimum
* minJ(©)— neura
Solve via & (©) \‘ * But, tends to work well in practice

Need code to compute:
«J(O)
o 0 J(@)

oo "
(]

UCLA eNGINEERING

Based on slide ™

Forward Propagation

* Given one labeled training instance (x, ¥):

Forward Propagation

e alll =x

. 22 — ©)a)

« a® = ¢(z®) [add a,?]
. 20— ©(2)a®

« aB®) = ¢(z®) [add a,?)]
R SPNC NG

+ al) = hy(x) = g(z)

UCLA enGINEERING

. Computer Science
Based on slide Imdiiadss (ts

Backpropagation: Compute Gradient

e
S

(t)g'(t) =

df dg

dg dt

00 = “error” of n%de 7in Iayer [
() _
Formally, 6,7 = o (l) ——cost(x;)

where cost(x;) = y; log he(x;) + (1 — y;) log(1 — he(x;))

Based on slicle Imildeaai

36

This lecture

+» Review: Neural Network
» Recurrent NN

“* Representation learning in NLP

UCLA encGINEERING

ML in NLP 21

Computer Science

How to deal with input with variant size?

*» Use same parameters

®
]

b

UCLA encGINEERING

Computer Science

av C:) CZ; Zg>
r 1t 1 1
= A A A > A
b & o
<S> Today is day

Advanced ML: Inference 22

Recurrent Neural Networks

Feed-forward NN Recurrent NN
h=¢g(Vx+c) h; = g(Vx; + Uh;_; 4 c)
y=Wh+b y: = Wh; +b

UCLA encGINEERING

Computer Science

Recurrent Neural Networks

Feed-forward NN Recurrent NN
h=¢g(Vx+c¢) -Br=gMNegt+-Yhprri-el
y:Wh+b ht :g(V[Xt;ht—l] —|—C)

y: = Wh; +b

UCLA encGINEERING

Computer Science

Unroll RNNs

h; = g(Vx; + Uhs_; + ¢)

y: = Wh; + b
7
[Cos72]
U
P l\k~yt_,\>
V
h h h h
Vv

UCLA enGINEERING
Computer Science

RNN training

*» Back-propagation over time

ht = g(VXt -+ Uht—l -+ C)
y = Wh|m| +b

(1 i i ;
e T x|
What happens to gradients as you go back

i T ?
in time Ohs Ohy 0y OF OF
Ohy Ohy Jhy Oy OF

UCLA encGINEERING

Computer Science

Vanishing Gradients

“* For the traditional activation functions,
each gradient term has the value in range
(_1 3 1)

“* Multiplying n of these small numbers to
compute gradients

** The longer the sequence is, the more
severe the problems are.

UCLA encGINEERING

Computer Science

RNNs characteristics

“* Model hidden states (input) dependencies
“» Errors “back propagation over time”
*+ Feature learning methods

“* Vanishing gradient problem:
cannot model long-distant dependencies of
the hidden states.

UCLA encGINEERING

Computer Science

Long-Short Term Memory Networks
(LSTMs)

A
N N/ [i o (Wi[xe, he] + b;) '\
S g — i\ [wWiin)+
/ \\\ 0, n (T(W :Xt, ht -+ bo)
k \ & / \ F(Wg[xe, b + by))

" Forget Gate / Cy = ft * Ce—1 -+ it * gt
@) (e
- \ ht = 0O * f(Ct)

/4 Ut Gate Use gates to control the information to
be added from the input, forgot from the
@ o previous memories, and outputted.
o and f are sigmoid and tanh function
/ \ respectively, to map the value to [-1, 1]

UCLA enGINEERING
Computer Science

Another Visualization

Capable of modeling long-distant dependencies between states.

UCLA ENGINEERING Figure credit: Christopher Olah
Computer Science

Bidirectional LSTMs

Backward

LSTM

©)
2
oc
i
w
£
o
Z
i
<
o |
O
-

W
v
c

L
v

wn
-
o

.
3
o
£
o
o

How to deal with sequence output?

+* |dea 1: combine DL with CRF

+* |dea 2: introduce structure in DL

UCLA encGINEERING

ML in NLP

Computer Science

32

LSTMs for Sequential Tagging

(V) y,=Wh,+b
O min Y (,.,)

Forget some of the past Add ®ew memories

y/‘vm

yemmemented model of input + local predictions.

Computer Science

Recall CRFs for Sequential Tagging

o‘q{{g»e

Arbitrary features on the input side
Markov assumption on the output side

UCLA encGINEERING

Computer Science

LSTMs for Sequential Tagging

“» Completely ignored the interdependencies
of the outputs

» Will this work? Yes.

* Liang et. al. (2008), Structure Compilation:
Trading Structure for Features

“» Is this the best model? Not necessarily.

UCLA encGINEERING

Computer Science

Combining CRFs with LSTMs

Backward
LSTM

-

UCLA enai

Computer Science

Traditional CRFs v.s.
LSTM-CRFs

+»» Traditional CRFs:

1 n
P(Y1X:0)—— | [exp@f (i %))
Y1 |exp0f s yroi) ™
Y _n=
% LSTM-CRFs:
Perixto)l 1 [Texp(Af Oy LSTM ()

/ EHGXP(A’J[(%’yi_l,LSTM(xlzn) !

O ={A,Q} where Qis LSTM parameters
UCLA enciNeerING

Computer Science

Combining Two Benefits

Directly model output dependencies by CRFs.
Powerful automatic feature learning using biLSTMs.

Jointly training all the parameters to “share the
modeling responsibilities”

UCLA encGINEERING

Computer Science

Transfer Learning with LSTM-CRFs

++» Neural networks as feature learner
+» Share the feature learner for different tasks

< Jointly train the feature learners so that it
learns the common features.

+» Use different CRFs for different tasks to
encode task-specific information

“* Going forward, one can imagine using other
graphical models besides linear chain CRFs.

UCLA encGINEERING

Computer Science

Transfer Learning CWS + NER

Linear Chain
CRF for CWS

Linear Chain
CRF for NER

Hidden Layer E E E
L E E E
, FoR
LSTM for
Segmentation O - 2020]
\ % 4
Embeddings (IZ(” ,,,,,, C('n-ll c'(n)
Lookup Table E E E Io.
H B d

Features

Lexica|5 = EIB

 S—
Input clv cln-1) o) Input CV ... Cl~1} Cn) }
For CWS for NER

UCLA eNGINEERING
Computer Science

Shared

Joint Training

“* Simply linearly combine two objectives.

. Ljoint(®> — /\Ls (ys§ Ls, @) + £7L(y7z; L, @>
%* Alternative updates 10rr eacn moduie s

parameters.

UCLA encGINEERING

Computer Science

How to deal with sequence output?

+* |dea 1: combine DL with CRF

+* |dea 2: introduce structure in DL

UCLA encGINEERING

ML in NLP

Computer Science

42

Sequence to Sequence Learning
with Neural Networks

NIPS 2014

Ilya Sutskever Oriol Vinyals Quoc V. Le
Google Google Google
ilyasu@google.com vinyals@google.com gvl@google.com
Abstract

Deep Neural Networks (DNNs) are powerful models that have achieved excel-
lent performance on difficult learning tasks. Although DNNs work well whenever
large labeled training sets are available, they cannot be used to map sequences to
sequences. In this paper, we present a general end-to-end approach to sequence
learning that makes minimal assumptions on the sequence structure. Our method
uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence
to a vector of a fixed dimensionality, and then another deep LSTM to decode the
target sequence from the vector. Our main result is that on an English to French
translation task from the WMT-14 dataset, the translations produced by the LSTM
achieve a BLEU score of 34.8 on the entire test set, where the LSTM’s BLEU
score was penalized on out-of-vocabulary words. Additionally, the LSTM did not
have difficulty on long sentences. For comparison, a phrase-based SMT system
achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM
to rerank the 1000 hypotheses produced by the aforementioned SMT system, its
BLEU score increases to 36.5, which is close to the previous state of the art. The
LSTM also learned sensible phrase and sentence representations that are sensitive
to word order and are relatively invariant to the active and the passive voice. Fi-
nally, we found that reversing the order of the words in all source sentences (but
not target sentences) improved the LSTM’s performance markedly, because doing
so introduced many short term dependencies between the source and the target
sentence which made the optimization problem easier.

43

Sequence to Sequence Learning NIPS 2014
with Neural Networks

Ilya Sutskever Oriol Vinyals Quoc V. Le
Google Google Google
ilyasul@google.com vinyals@google.com gvl@google.com

<EOS>

T
|

Z

?
T T T]

A B C <EOS>

s—» |—>x
x —» f— <
<~——» |—>N

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

I W Advanced ML: Inference 44

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau

Jacobs University Bremen, Germany ICLR 2015

KyungHyun Cho Yoshua Bengio*
Université de Montréal

ABSTRACT

Neural machine translation is a recently proposed approach to machine transla-
tion. Unlike the traditional statistical machine translation, the neural machine
translation aims at building a single neural network that can be jointly tuned to
maximize the translation performance. The models proposed recently for neu-
ral machine translation often belong to a family of encoder—decoders and encode
a source sentence into a fixed-length vector from which a decoder generates a
translation. In this paper, we conjecture that the use of a fixed-length vector is a
bottleneck in improving the performance of this basic encoder—decoder architec-
ture, and propose to extend this by allowing a model to automatically (soft-)search
for parts of a source sentence that are relevant to predicting a target word, without
having to form these parts as a hard segment explicitly. With this new approach,
we achieve a translation performance comparable to the existing state-of-the-art
phrase-based system on the task of English-to-French translation. Furthermore,
qualitative analysis reveals that the (soft-)alignments found by the model agree
well with our intuition.

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio*
Université de Montréal

X, X X X

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the ¢-th tar-
get word y; given a source
sentence (z1, 2, ...,TT).

ICLR 2015

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

)
5 x ICLR 2015
£ A= o 7 A
O oll = | @ = S o =
s il el sl ishel sl LES |]©
= o) [(! [o8 | o ol e 1 Sl 2 e V
Ll
accord
sur
la
zone

économique
européenne
a

été

signé

en

ao(t

1992

<end>

Save
iavas

