
Lecture 8:
Learning to Search –

Imitation Learning in NLP

Kai-Wei Chang
CS @ UCLA

kw@kwchang.net

Couse webpage: https://uclanlp.github.io/CS269-17/

1ML in NLP

Learning to search approaches
Shift-Reduce parser
vMaintain a buffer and a stack
vMake predictions from left to right
vThree (four) types of actions:

Shift, Reduce, Left, Right

2Kai-Wei Chang (University of Virginia)
Credit:	Google	research	blog

Structured Prediction as a Search
problem
v Decomposition of y often implies an ordering
⇒ a sequential decision making process

Kai-Wei Chang 3

I can can a can
Pro Md Vb Dt Nn

Notations
v Input: 		𝑥 ∈ 𝑋
vTruth: y∗ ∈ 𝑌(𝑥)
vPredicted: ℎ(𝑥) ∈ 𝑌(𝑥)
v Loss: 		𝑙𝑜𝑠𝑠 𝑦, 𝑦∗

4

I can can a can
Pro Md Vb Dt Nn

Pro Md Nn Dt Vb
Pro Md Nn Dt Md
Pro Md Md Dt Nn
Pro Md Md Dt Vb

Goal: make joint prediction to minimize a joint loss

find ℎ ∈ 𝐻 such that ℎ x ∈ 𝑌(𝑋)
minimizing		𝐸 4,5 ~7 𝑙𝑜𝑠𝑠 𝑦, ℎ 𝑥 based on 𝑁
samples 𝑥9, 𝑦9 ~𝐷

Kai-Wei Chang (MSR -> U of Virginia)

Credit Assignment Problem

When making a mistake, which local decision should
be blamed?

5

sentence

Kai-Wei Chang (University of Virginia)

Jump	in	{0,1}
Right	in	{0,1}
Left	in	{0,1}
Speed	in	{0,1}

Extracted	27K+	binary	features
from	last	4	observations
(14	binary	features	for	every	cell)

Output:Input:

From	Mario	AI	competition	2009
An Analogy from Playing Mario

High level goal:
Watch an expert play and

learn to mimic her behavior

V
ideo credit: Stéphane

R
oss, G

eoff G
ordon and D

rew
 B

agnell

Example of Search Space

Kai-Wei Chang 7

I

Pro Md Vb Dt Nn

decision

action
decision

can

Pro Md Vb Dt Nn action
decision

can

Pro Md Vb Dt Nn action

I can can a can

Pro Md

Example of Search Space

Kai-Wei Chang 8

I
can

Pro Md Vb Dt Nn

I can can a can

Pro Md Vb Dt Vb

can
a

can

e end

Encodes an output
ŷ = ŷ(e)

from which
loss(y, ŷ)

can be computed
(at training time)

Policies

vA policy maps observations to actions

Kai-Wei Chang 9

p() =a
obs.

input: x
timestep: t
partial traj: τ
… anything else

Labeled data → Reference policy

vGiven partial traj. 𝑎<, 𝑎=, … 𝑎?@<and true
label 𝑦, the minimum achievable loss is
(𝑎?∗, 𝑎?A<∗ , … 𝑎B∗) = arg min

(JK,JKLM,…JN)
loss(y, ŷ(a))

Kai-Wei Chang 10

𝑎<

𝑎=
… .

𝑎?@<

e
(𝑎?, 𝑎?A<, … 𝑎B)

loss(y, ŷ(a))

Labeled data → Reference policy

vGiven partial traj. 𝑎<, 𝑎=, … 𝑎?@<and true
label 𝑦, the minimum achievable loss is
(𝑎?∗, 𝑎?A<∗ , … 𝑎B∗) = arg min

(JK,JKLM,…JN)
loss(y, ŷ(a))

vThe optimal action is the corresponding 𝑎?∗

vThe optimal policy is the policy that always
selects the optimal action

vReference policy can be constructed by the
gold label in the training phase

Kai-Wei Chang 11

Ingredients for learning to search

Kai-Wei Chang 12

Structured	Learning

Input: 𝑥 ∈ 𝑋
Truth:	y ∈ 𝑌(𝑥)
Outputs:	𝑌(𝑥)
Loss: 𝑙𝑜𝑠𝑠 𝑦, 𝑦P

Learning	to	Search	

Search	Space:
- state:	𝑠 ∈ 𝑆
- action:	𝑎 ∈ 𝐴(𝑎)
- end	state	𝑒 ∈ 𝑆

Policies:	𝜋 𝑠 → 𝑎
Reference	policy:	𝜋VWX

A Simple Approach

vCollect trajectories from expert 𝜋VWX

vStore as dataset 𝐷 = {(𝑜, 𝜋VWX(𝑜))|𝑜~𝜋VWX}
vTrain classifier 𝜋 on 𝐷
v Let 𝜋 play the game!

Kai-Wei Chang 13

Learning a Policy[Chang+ 15, Ross+15]

v At “?” state, we construct a cost-sensitive multi-class
example (?, [0, .2, .8])

Kai-Wei Chang 14

? E

E

E

rollin rollout

loss=.2

loss=0

loss=.8

one-step
deviations

Example: Sequence Labeling

Receive input:

Make a sequence of predictions:

Pick a timestep and try all perturbations there:

Compute losses and construct example:

x = the monster ate the sandwich
y = Dt Nn Vb Dt Nn

x = the monster ate the sandwich
ŷ = Dt Dt Dt Dt Dt

x = the monster ate the sandwich
ŷDt = Dt Dt Vb Dt Nn l=1
ŷNn = Dt Nn Vb Dt Nn l=0
ŷVb = Dt Vb Vb Dt Nn l=1

({ w=monster, p=Dt, …}, [1,0,1])

Learning a Policy[Chang+ 15, Ross+15]

v At “?” state, we construct a cost-sensitive multi-class
example (?, [0, .2, .8])

Kai-Wei Chang 16

? E

E

E

rollin rollout

loss=.2

loss=0

loss=.8

one-step
deviations

Analysis

[ICML 15]: Learning to search better than your teacher

17

Analysis

Roll-in with Ref:
unbounded structured regret

18

Analysis

Roll-out with Ref:
no local optimal if reference is sub-optimal

19

Analysis

Roll-in & Roll-out with current policy
ignore Ref ⇒ reinforcement	learning

20

Analysis

Minimizes a combination of regret to Ref and
regret to its own one-step deviations.
vCompetes with Ref when Ref is good.
vCompetes with local deviations to improve

on suboptimal Ref
21

How to Program?

vSample codes are available in VW

CS XXX Lecture 1 22

