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Learning to search approaches
Shift-Reduce parser

“* Maintain a buffer and a stack
“» Make predictions from left to right

“» Three (four) types of actions:
Shift, Reduce, Left, Right

Dependency Parsing

| booked a ticket ) to Google

Credit: Google research blog
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Structured Prediction as a Search
problem

“* Decomposition of y often implies an ordering
= a sequential decision making process

I can | can a can
Pro | Md | Vb Dt Nn
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Notations

o _ I |[can|/can| a |/can
** Input: XEX =
Pro/ Md | Vb|| Dt ||Nn

“ Truth: y* €Y(x) s Pro/|Md|/Md | Dt || Vb

2 Predicted: h(x) € Y(x) = | oo & M4 Dt

Pro | Md |[Nn | Dt Md
’:‘ LOSS lOSS(y,y*) Pro Md||Nn| Dt | Vb

Goal: make joint prediction to minimize a joint loss

find h € H such that h(x) e Y(X)
minimizing E . ,)~p|loss(y, h(x))| based on N
samples (x,,, y,,)~D
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Credit Assignment Problem

When making a mistake, which local decision should
be blamed?

States O m
Actons ™ l : -+ O™ oat sushi with tuna
. :

L O— A
<I>(s) O O eat sushi with tuna
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An Analogy from Playing Mario
From Mario Al competition 2009

Input: output
oy sy Jump in {0,1}
Right in {0,1}

- Left in {0,1}
Speed in {0,1}

[[ouSeq MaI(] puk UOPIOL) JJOIL) ‘SSOY dueydolg :JIPaId 0IPIA

Extrac High level goal:
from | Watch an expert play and
(14 g learn to mimic her behavior




Example of Search Space

I

can

can | a || can

Pro

Md
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Example of Search Space

| can can a can

Pro Md Vb Dt Vb

Encodes an output

L y=y(e)
can from which
can loss(y, ¥)

a can be computed
can (at training time)

Pro Md Vb| Dt Nn

é end,7/
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Policies

*+ A policy maps observations to actions

input:

timestep: t —
J l : partial traj; 1

... anything else
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Labeled data - Reference policy

“* Given partial traj. a4, a,, ...a;_;and true
label y, the minimum achievable loss is

(@}, a4y, @) =arg_ min loss(y. §(a)
(a¢,a¢41,.-0T)

loss(y, y(a))

(ag, Aryq, - QT)
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Labeled data - Reference policy

“* Given partial traj. a4, a,, ...a;_;and true
label y, the minimum achievable loss is

(@}, a4y, @) =arg_ min loss(y. §(a)
(a¢,a¢41,.-0T)

“* The optimal action is the corresponding a;

*» The optimal policy is the policy that always
selects the optimal action

“+* Reference policy can be constructed by the
gold label in the training phase
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Ingredients for learning to search

Structured Learning Learning to Search

Search Space:
Input: x € X - state:s € S
Truth:y € Y(x) - action: a € A(a)
Outputs: Y (x) -end statee € S
Loss: loss(y, V) Policies: m(s) — a
Reference policy: ©"¢/
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A Simple Approach

% Collect trajectories from expert "¢/

% Store as dataset D = {(o, "¢/ (0))|o~n"¢/}
¢ Train classifier t on D

*» Let m play the game!
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Learning a Policychang+ 15, Ross+15]

2 At “?” state, we construct a cost-sensitive multi-class
example (?, [0, .2, .8])

rollin rollout

one-step
deviations
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Example: Sequence Labeling

Receive input: X = the monster ate the sandwich
y=Dt Nn Vb Dt Nn

Make a sequence of predictions:

X = the monster ate the sandwich
y=Dt Dt Dt Dt Dt

Pick a timestep and try all perturbations there:
X = the monster ate the sandwich
yo=Dt Dt Vb Dt Nn I=I
Yvp=Dt Nn Vb Dt Nn I=
9yw=Dt Vb Vb Dt Nn I=]

Compute losses and construct example:
( { w=monster, p=Dt, ...}, [1,0,1])
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Learning a Policychang+ 15, Ross+15]

2 At “?” state, we construct a cost-sensitive multi-class
example (?, [0, .2, .8])

rollin rollout

one-step
deviations
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Analysis

roll-out —

. Reference Mixture L earned
| roll-in
Reference Inconsistent
Learned No local opt Good RL

Mixture: w.p. 3 use Ref, else use Learned.

[ICML 15]: Learning to search better than your teacher
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Analysis

roll-out — :
. Reference Mixture L earned
| roll-in
[ Reference Inconsistent
Learned No local opt Good RL

Mixture: w.p. 3 use Ref, else use Learned.

Roll-in with Ref:
unbounded structured regret
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Analysis

roll-out — :
. Reference Mixture Learned
| roll-in
Reference Inconsistent
Learned [No local opt] Good RL

Mixture: w.p. 3 use Ref, else use Learned.

Roll-out with Ref:
no local optimal if reference is sub-optimal

UCLA encGINEERING
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Analysis

roll-out — :
. Reference Mixture Learned
| roll-in
Reference Inconsistent
Learned No local opt Good [ RL

Mixture: w.p. 3 use Ref, else use Learned.

Roll-in & Roll-out with current policy
ignore Ref = reinforcement learning
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Analysis

roll-out — :
: Reference Mixture Learned
| roll-in
Reference Inconsistent
Learned No local opt [Good u RL

Mixture: w.p. 3 use Ref, else use Learned.

Minimizes a combination of regret to Ref and
regret to its own one-step deviations.

“» Competes with Ref when Ref is good.

“» Competes with local deviations to improve
on suboptimal Ref

UCLA encGINEERING
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How to Program?
Sequential RUN(examples)

1: for i = 1 to len(examples) do

2. prediction < predict(examples[i], examples[i] . label)
3. loss(prediction # examples|i]. label)

4: end for

Decoder + loss + reference advice

“» Sample codes are available in VW
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