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Learning to search approaches
Shift-Reduce parser
vMaintain a buffer and a stack
vMake predictions from left to right
vThree (four) types of actions:

Shift, Reduce, Left, Right

2Kai-Wei Chang (University of Virginia)
Credit:	Google	research	blog



Structured Prediction as a Search 
problem 
v Decomposition of y often implies an ordering
⇒ a sequential decision making process
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I can can a can
Pro Md Vb Dt Nn



Notations
v Input: 		𝑥 ∈ 𝑋
vTruth: y∗ ∈ 𝑌(𝑥)
vPredicted: ℎ(𝑥) ∈ 𝑌(𝑥)
v Loss: 		𝑙𝑜𝑠𝑠 𝑦, 𝑦∗
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I can can a can
Pro Md Vb Dt Nn

Pro Md Nn Dt Vb
Pro Md Nn Dt Md
Pro Md Md Dt Nn
Pro Md Md Dt Vb

Goal: make joint prediction to minimize a joint loss

find ℎ ∈ 𝐻 such that ℎ x ∈ 𝑌(𝑋)
minimizing		𝐸 4,5 ~7 𝑙𝑜𝑠𝑠 𝑦, ℎ 𝑥 based on 𝑁
samples 𝑥9, 𝑦9 ~𝐷

Kai-Wei Chang ( MSR -> U of Virginia)



Credit Assignment Problem

When making a mistake, which local decision should 
be blamed?
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sentence

Kai-Wei Chang (University of Virginia)



Jump	in	{0,1}
Right	in	{0,1}
Left	in	{0,1}
Speed	in	{0,1}

Extracted	27K+	binary	features
from	last	4	observations
(14	binary	features	for	every	cell)

Output:Input:

From	Mario	AI	competition	2009
An Analogy from Playing Mario

High level goal:
Watch an expert play and

learn to mimic her behavior

V
ideo credit: Stéphane
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Example of Search Space
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Example of Search Space
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I
can

Pro Md Vb Dt Nn

I can can a can

Pro Md Vb Dt Vb

can
a

can

e end

Encodes an output
ŷ = ŷ(e)

from which
loss(y, ŷ)

can be computed
(at training time)



Policies

vA policy maps observations to actions
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p(    ) =a
obs.

input: x
timestep: t
partial traj: τ
… anything else



Labeled data → Reference policy

vGiven partial traj. 𝑎<, 𝑎=, … 𝑎?@<and true 
label 𝑦, the minimum achievable loss is
(𝑎?∗, 𝑎?A<∗ , … 𝑎B∗ ) = arg min

(JK,JKLM,…JN)
loss(y, ŷ(a))
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loss(y, ŷ(a))



Labeled data → Reference policy

vGiven partial traj. 𝑎<, 𝑎=, … 𝑎?@<and true 
label 𝑦, the minimum achievable loss is
(𝑎?∗, 𝑎?A<∗ , … 𝑎B∗ ) = arg min

(JK,JKLM,…JN)
loss(y, ŷ(a))

vThe optimal action is the corresponding 𝑎?∗

vThe optimal policy is the policy that always 
selects the optimal action

vReference policy can be constructed by the 
gold label in the training phase

Kai-Wei Chang 11



Ingredients for learning to search
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Structured	Learning

Input: 𝑥 ∈ 𝑋
Truth:	y ∈ 𝑌(𝑥)
Outputs:	𝑌(𝑥)
Loss: 𝑙𝑜𝑠𝑠 𝑦, 𝑦P

Learning	to	Search	

Search	Space:
- state:	𝑠 ∈ 𝑆
- action:	𝑎 ∈ 𝐴(𝑎)
- end	state	𝑒 ∈ 𝑆

Policies:	𝜋 𝑠 → 𝑎
Reference	policy:	𝜋VWX



A Simple Approach

vCollect trajectories from expert 𝜋VWX

vStore as dataset 𝐷 = {(𝑜, 𝜋VWX(𝑜))|𝑜~𝜋VWX}
vTrain classifier 𝜋 on 𝐷
v Let 𝜋 play the game!
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Learning a Policy[Chang+ 15, Ross+15]

v At “?” state, we construct a cost-sensitive multi-class 
example (?, [0, .2, .8])
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Example: Sequence Labeling

Receive input:

Make a sequence of predictions:

Pick a timestep and try all perturbations there:

Compute losses and construct example:

x = the monster ate the sandwich
y = Dt    Nn Vb Dt     Nn

x = the monster ate the sandwich
ŷ = Dt    Dt Dt Dt Dt

x = the monster ate the sandwich
ŷDt = Dt    Dt Vb Dt     Nn l=1
ŷNn = Dt    Nn Vb Dt     Nn l=0
ŷVb = Dt    Vb Vb Dt     Nn l=1

( { w=monster, p=Dt, …},  [1,0,1] )



Learning a Policy[Chang+ 15, Ross+15]

v At “?” state, we construct a cost-sensitive multi-class 
example (?, [0, .2, .8])
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Analysis

[ICML 15]: Learning to search better than your teacher
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Analysis

Roll-in with Ref:
unbounded structured regret
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Analysis

Roll-out with Ref: 
no local optimal if reference is sub-optimal
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Analysis

Roll-in & Roll-out with current policy 
ignore Ref ⇒ reinforcement	learning
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Analysis

Minimizes a combination of regret to Ref and 
regret to its own one-step deviations.
vCompetes with Ref when Ref is good.
vCompetes with local deviations to improve 

on suboptimal Ref
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How to Program?

vSample codes are available in VW
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